В этой заметке мы опишем основные методологические, общесистемные инструменты ТРИЗ, не привязанные к «железной» чисто инженерной конкретике. Вполне вероятно, что некоторые из описанных методов читателю на интуитивном уровне уже известны. Заметка и статьи, на которые мы делаем ссылки, могут помочь оформить и технологизировать эти интуитивные умения. Кроме того, некоторые закономерности наверняка уже встречались, например S-кривая — жизненный цикл товара и т. п. Это не умаляет ценности предлагаемых методов, поскольку здесь они даются в виде общесистемных закономерностей, применимых в совершенно различных областях.
Отметим, что мы используем примеры и из бизнеса, и технические. Относительно последних призываем вас не пугаться и в «железных» задачах улавливать общесистемные закономерности и переводить на язык вашей области деятельности. Кроме того, можем порекомендовать во время чтения заметки немедленно обкатывать все предлагаемые инструменты на каких-нибудь собственных задачах.
Системный оператор
Ключевое понятие для ТРИЗ — система. Система — совокупность элементов и связей между ними, обладающая свойством, не сводящимся к сумме свойств элементов. Крылья, хвост, двигатель и прочие железки, должным образом объединенные, приобретают системное свойство: возможность летать. Мы говорим: «Появилась система по имени „самолет“». Почему для нас так важно понять, что такое система? Дело в том, что все инструменты поиска сильных решений, которые предлагает ТРИЗ, опираются на объективные
Подсистема
— элемент системы, без которого теряется системное свойство. Например, фирма без уборщицы не перестает быть фирмой, а без персонала вообще — перестает («липовые» фирмы не рассматриваем). Значит, персонал — подсистема фирмы. Деньги, товары, средства производства — все это может быть названо подсистемами.Надсистема
— объемлющая система, т. е. система, элементом которой является рассматриваемая нами система. Что именно считать надсистемой, зависит от нашего интереса в каждом конкретном случае. Автомобиль на дороге — элемент системы «дорожное движение», в автомойке — системы «инфраструктура для обслуживания автомобилей».Решая любую задачу, развивая любую систему, необходимо одновременно «просматривать» подсистемы и надсистемы. Изобретен новый тип колеса (изменения в подсистеме), как это отразится на системе «автомобиль»? А на надсистеме «дороги»? Или мы вносим какие-то изменения в деятельность системы (фирмы). Как на это отреагируют наши надсистемы (например, такая-то группа клиентов)? Может быть, в ответ нужно изменить что-то в подсистемах, например создать новый отдел, который будет удовлетворять новым требованиям надсистемы?
При этом и системы, и надсистемы, и подсистемы изменяются во времени. Изобразим их на схеме, нынешнее состояние обозначим моментом «0», прошлое — моментом "-", будущее — моментом "+". Получим описание системы, подсистем и надсистем в настоящем; описание их же в прошлом; предполагаемое их состояние в будущем. Отметим, что в качестве границы между вертикальными столбцами бывает удобно выбирать качественные скачки в развитии систем. Например, С(0) — реактивный самолет, ПС(0) — такие-то и такие-то и реактивный двигатель. С(-) — винтовой самолет, ПС(0) — такие-то и винтовой двигатель. Соответственно другими будут надсистемы — службы ремонта, заправки и т. д. Что будет дальше? Можно предположить, какие качественные скачки могут случиться в подсистемах и соответственно как изменится сама система.
Дальше мы будем говорить о способах прогнозирования и о закономерностях развития систем. Здесь осталось заметить, что начинать решение всякой задачи полезно, "расписав" ее по системному оператору, выписав для рассматриваемой вами системы различные подсистемы и надсистемы в прошлом и будущем. Это даст вам объемность представления о задаче, позволит находить более сильные решения. Нетрудно заметить, что системный оператор является одним из способов