Читаем Ошибка Коперника. Загадка жизни во Вселенной полностью

Далее следует так называемая апостериорная вероятность – и именно ее мы и хотим узнать, когда гоняемся за котами или пытаемся найти ответ на вопрос о жизни во Вселенной. Апостериорная вероятность – обратная сторона вышесказанного, причем интуитивно более понятная. Это вероятность того, что гипотеза верна, в свете свидетельств или измерений. Иначе говоря, эта вероятность говорит нам, каковы шансы, что моя теория о котах верна – или что во Вселенной есть жизнь помимо нас, при том, что мы наблюдаем только жизнь здесь, на Земле. А еще эта та самая мера уверенности, о которой мы говорили в связи с рассветами и бильярдными шарами.

Наконец, при рассмотрении моего примера с котами надо учитывать еще и такой фактор, как сама по себе наша гипотеза, и это называется априорной вероятностью. В данном случае это вероятность, что любой кот окажется чеширским, и мы считаем, что она равна 20 % или 0,2. Мы, конечно, не знаем, точна ли цифра 20 %, это то самое число, которое мы хотим подтвердить, – примерно как вероятность, что на каждой отдельно взятой планете может зародиться жизнь. Интересно, что когда мы приписываем ситуации эту вероятность, то имплицитно исходим из предположения, что сама идея – существование чеширских котов – верна. А такого рода предположения опасны, поскольку мы можем случайно придать слишком много веса безумным гипотезам. Так что лучше всего – если, конечно, мы не страдаем чрезмерной самоуверенностью – оценить побольше возможных «априори» и держать кулаки за то, что данные, которыми мы располагаем, позволят распределить гипотезы-победительницы и гипотезы-аутсайдеры по относительной вероятности.

Формулировка теоремы Байеса предполагает также, что данные, которые мы получаем, должны быть точными, что не будет никаких ложноположительных и ложноотрицательных результатов. Поэтому я в ходе своего исследования кошек предполагаю, что если я беру кота и определяю, что он чеширский, так и есть. Это очень важная оговорка. Например, в мире медицины ложноположительных и ложноотрицательных результатов очень много. В таких случаях формулу Байеса приходится немного подправить, чтобы учесть вероятность неверного диагноза и ошибок при анализах. Если вы пытаетесь оценить вероятность той или иной болезни или даже эпидемической угрозы, главное – точность данных и «априори», на которые вы опираетесь.

Итак, теорема Байеса позволяет нам оценить отношения между тем, что мы можем наблюдать и измерять, и нашими гипотезами или математическими моделями. В принципе, она должна позволять нам приписывать абсолютную вероятность – уверенность, – что наша гипотеза представляет собой точное описание природного феномена. Но тут возникают кое-какие досадные осложнения, и иногда результаты подобных вычислений сильно нас огорчают. Не исключено, что мы не знаем, что считать «априори» и вообще верна наша гипотеза хотя бы приблизительно. И измерения бывают несовершенными из-за случайной выборки или непредвиденных погрешностей – и в моем примере так и есть, поскольку чеширских котов в природе не существует. Поэтому вероятность (то есть мера уверенности), которую мы получаем, оказывается очень маленькой и не помогает нам принять решение.

К счастью, теорема Байеса куда мощнее. Она позволяет обойти эти очевидные препятствия при помощи красивого приема, который ученые часто применяют в повседневной работе – и когда гоняются за котами, и когда оценивают структуру мироздания. Дело в том, что абсолютные значения вероятностей нас обычно не очень интересуют. Нас интересует, какая модель или гипотеза «лучше», то есть вероятнее, прочих. Тогда мы для начала предполагаем, что все гипотезы могут оказаться верными с одинаковой вероятностью. На самом деле главное – разобраться, какая гипотеза лучше всего соответствует нашим данным, какая победит. Конечно, может оказаться, что все они ошибочны, но нам просто хочется узнать, какая из них ошибочна меньше прочих. Для этого нам нужно перевернуть формулу Байеса. В конце концов мы оценим вероятность или уверенность, что наши измерения могут объясняться той или иной гипотезой (по сравнению с остальными). Этот простой прием, как выясняется, – необычайно мощный научный инструмент.

Чтобы применить его к любопытному случаю с чеширскими котами, я могу протестировать разные методы выявления чеширских котов – например, взвешивание или проверка, умеют ли они улыбаться. Если 20 % котов и в самом деле чеширские, то результаты любых методов, и точных, и не очень, дадут примерно одни и те же результаты с разными относительными вероятностями. Подход Байеса позволяет мне сочетать их все и таким образом измерить общую уверенность в своей гипотезе по сравнению с альтернативными вариантами.

А вдруг никакие методы выявления не дадут похожих результатов, и общая уверенность у меня окажется низкой? В таком случае мне придется задуматься о том, что либо неверны какие-то подробности моей изначальной гипотезы, либо чеширских котов не бывает.

Перейти на страницу:

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука