Последние технологические достижения, например трехмерное (3D) сканирование (по качеству не уступающее тому, что используется в медицине), обеспечивают невиданный прежде уровень точности. Например, один из самых важных параметров для вычисления силы реактивной струи, а значит, и скорости аммоноида, — это объем жилой камеры. Его невероятно трудно оценить у аммоноидов со сложными швами на раковинах (то есть у большинства аммоноидов). Но с технологией 3D-сканирования уже не нужно оценивать — можно просто измерить.
Такое сканирование дает еще больше возможностей в сочетании со стремительно развивающейся технологией 3D-печати. Кэтлин Риттербуш сейчас занимается оборудованием лаборатории, в которой можно будет взять любое ископаемое, отсканировать его и напечатать. Мячики для гольфа премиум-класса постоянно тестируются на скорость и вращение. Вот и Риттербуш хочет сделать так, чтобы можно было тестировать трехмерные модели аммоноидов разной формы, помещая их в аквариум с водой и наблюдая за ними. Она дает весьма меткое описание проекта: «…следует рассматривать раковину просто как занозу в заднице [для моллюска]». Нельзя не признать тот факт, что раковина ужасно мешает животному, которое пытается двигаться под водой. И Риттербуш в своей лаборатории надеется с помощью 3D-моделей разобраться в том, как эволюция справлялась с этой сложной задачей.
Собрав библиотеку отсканированных окаменелостей, Риттербуш и ее студенты могут слегка изменять любой из параметров и смотреть, а что будет, если, например, вся раковина станет шире. А если станет шире только отверстие? А если уже? Что, если у раковины окажется более острый киль или его вообще не будет? (Киль — это выступающее ребро вдоль внешней стороны некоторых раковин аммоноидов, и само название говорит о том, что, по мнению палеонтологов, он служит для устойчивости при быстром плавании — точно так же, как киль, идущий вдоль днища лодки, не дает ей перевернуться. Однако это предположение никогда не проверялось.) И наконец, то, что всем нам не давало покоя: какова роль этих феерических ребер — улучшают они гидродинамические свойства моллюска или ухудшают?
Проект Риттербуш позволяет на реальных объектах изучить схему, объясняющую взаимосвязь формы и гидродинамических свойств раковин аммоноидов, — аккуратный маленький треугольник, который построил ныне покойный немецкий палеонтолог Герд Вестерманн и который Риттербуш в его честь назвала вестермановым пространством[101]
. Вестерманн заметил, что при всем их разнообразии основные формы аммоноидов — это вариации трех базовых типов: плоские диски оксиконы (от греческого корня, означающего «острый»), свободно закрученные и похожие на змей серпентиконы и пухлые шарообразные раковины — сфероконы, которые, как вы уже догадались, подобны сферам. Эти формы возникают по мере роста раковины в зависимости от ширины новых витков или того, насколько они перекрывают старые.Рис. 4.3.
Вестерманово пространство отражает наиболее распространенные гипотезы о поведении аммоноидов в зависимости от формы их раковинСамыми проворными и ловкими были, скорее всего, оксиконы, которые могли стремительно двигаться в воде, как летающие диски. Палеонтологи подозревают, что они были активными хищниками: догоняли добычу с помощью реактивного движения и хватали ее. Также они могли мигрировать на дальние расстояния, как современные киты и морские птицы.
Считается, что нетуго закрученные серпентиконы и шарообразные сфероконы испытывали слишком сильное сопротивление воды, чтобы двигаться быстро. Возможно, они не охотились, а использовали руки и челюсти, чтобы фильтровать воду и питаться любыми мелкими частицами, которые в ней попадались. Вестерманн считал, что серпентиконы — дрейфующий планктон, в чем-то схожий с древними медленно плавающими головоногими ордовика, а сфероконы — вертикальные мигранты[102]
.Вертикальная миграция наблюдается у большого количества современных морских животных. Очень многие животные в течение дня держатся на глубине, а по ночам перемещаются к поверхности: при этом их тела образуют слой, достаточно плотный, чтобы отражать сигналы эхолота. Во время Второй мировой войны суда иногда принимали этот слой за морское дно: моряки наверняка были встревожены, когда «дно» начинало подниматься.