Следует договориться об обозначении времени, чтобы можно было установить тот момент, к которому относятся количественные значения величин в уравнениях. В литературе, посвященной данным вопросам, время часто обозначается небольшими подстрочными индексами. Так как это не совсем согласуется с возможностями пишущей машинки и вовсе не соответствует возможностям печатающих устройств многих вычислительных машин, то для обозначения времени мы будем пользоваться одной или двумя прописными буквами, следующими за обозначением переменной и отделенными от него точкой.
Так, в предыдущих примерах
Темпы, напротив, будут отмечаться двумя буквами. Например, темп выпуска готовой продукции, имеющий место
Константы не будут иметь обозначения времени, так как они не изменяются от одного интервала времени к другому. Постоянное запаздывание, связанное с доставкой товаров в розничную торговую сеть, может быть обозначено
6. 4. Классы уравнений
Уравнения уровней и темпов уже рассматривались при описании основных свойств используемой ниже структуры динамической модели.
Были перечислены и другие типы уравнений, которыми удобно пользоваться, но которые не вносят в модель новых динамических характеристик. Это вспомогательные и дополнительные уравнения и уравнения начальных условий. Рассмотрим форму этих уравнений.
Уравнения уровней. Уровни представляют собой переменное по величине содержимое резервуаров в системе. Как уже отмечалось, они существовали бы и в том случае, если бы система была приведена в состояние покоя и все потоки в ней остановились бы. Значения уровней определяются заново для каждого из последующих интервалов решений; предполагается, что между моментами времени, для которых решаются уравнения, уровни изменяются с постоянной скоростью, но их значения в этом промежутке времени не вычисляются.
Вот пример типичного уравнения уровня:
Символы обозначают следующие переменные:
Обозначение «6–1, L» справа указывает, что данное уравнение является первым в главе 6 (всем уравнениям присвоен цифровой шифр) и что оно описывает уровень («L»)[34].
Уравнение устанавливает прямую количественную зависимость, согласно которой запас товаров
Следует заметить, что все члены уравнения имеют размерность «единицы» товаров. В скобках правой части уравнения «единицы» получаются при умножении времени, выраженного в долях недели, на темпы потока в единицах в неделю.
Темпы потока всегда измеряются числом единиц за какой-либо интервал времени, такой, как день, неделя или месяц, но не в периодах, кратных интервалу решений
Сравнения уровней не зависят одно от другого; решение каждого из них зависит только от информации, касающейся предшествующего момента времени. Поэтому порядок решения уравнений уровней не имеет никакого значения. При решении какого-либо уравнения уровня в момент времени