Несложная иллюстрация (см. рис. 12-1) помогает понять различие между прогнозом поведения
Предположим, что модель призвана служить средством прогнозирования состояния действительной системы в течение какого-то определенного будущего периода. В качестве критерия точности прогноза берется среднее значение суммы квадратов разностей величин для модели и действительной системы, взятым за ряд близко стоящих друг к другу периодов времени. (Такой критерий является общепринятым, обычно он выбирается произвольно, без подтверждения его полезности, главным образом потому, что он очень прост с точки зрения математических вычислений).
При таком способе испытания первая модель, переменная которой, представляющая действительную систему, изображается прямой линией, обладает лучшей прогнозирующей способностью, так как ошибка окажется меньше, чем в случае использования второй модели.
Однако несмотря на то, что первая модель с точки зрения приведенного выше произвольного критерия способна лучше предсказать будущее состояние системы, нельзя ожидать, что с ее помощью можно будет обнаружить способы реконструкции действительной системы с целью изменения ее действия. Первая модель не дает представления о характерных колебаниях системы. Она исключает возможность проведения необходимой проверки собственной динамичности, подобной динамичности действительной системы. Поэтому можно сделать заключение о ее непригодности, так как она не способна воспроизвести похожую на синусоиду линию поведения, сходную с той, которая присуща действительной системе.
Рассмотрим вторую модель (рис. 12-1). Предположим, что ее структура и руководящие правила не встречают серьезных возражений. Дает ли она представление о динамическом характере, сходном с поведением действительной системы? Налицо преобладающий синусоидальный характер изменений. Период колебания у модели короче, чем у действительной системы, но всего лишь на 25 %. Коэффициент отклонения (отмечающий тенденцию колебания к возрастанию или затуханию) представляет собой незначительную отрицательную величину, мало отличающуюся от нулевого значения фактической системы. Поскольку вторая модель и действительная система имеют похожие амплитуды, период и коэффициент отклонения, следует признать, что эта модель может быть использована для отображения действительной системы. Выполненный анализ имеет смысл только потому, что мы верим в
Что же касается модели, которая смогла бы прогнозировать состояние действительной системы в определенный момент будущего, то здесь отметим следующее. Экономические и промышленные системы даже в первом грубом приближении не смогут быть независимыми от процесса действительного прогнозирования состояния системы в далеком будущем. Прогнозы необходимы, как руководство к действиям, которые будут иметь место в моделируемой системе. Действия, предпринятые в результате прогноза, непосредственно повлияют на поток событий, которые и были объектом прогноза. Удачная модель для предсказания будущего состояния предприятия или экономической системы не сможет оставаться независимой от этой системы, за исключением такого случая, когда ее предсказание окажется ошибочным. Если бы появилась модель,