Читаем Основы кибернетики предприятия полностью

S — переменная величина, которая подвергается выравниванию (в соответствующих единицах измерения).

Схематически экспоненциальное выравнивание показано на рис. B–1. В начале вычислений, в момент времени К, известно старое значение средней величины A.J. Выравниваемая величина обозначена S.JK. Разность (S.JK — A.J), входящая в уравнение В-1 и обозначенная х, будучи умноженной на 1/T, дает необходимую коррекцию для каждой целой единицы времени; умножая затем эту величину на DT, мы определим коррекцию на данном интервале решения у.

Рис. В-1. Экспоненциальное выравнивание.

Теперь мы остановимся на рассмотрении запаздываний в потоках информации, которые возникают в результате ее усреднения. Сопоставим уравнение В-1 с обычной парой уравнений, используемых для отображения экспоненциального запаздывания первого порядка.

Рис. В-2. Экспоненциальное выравнивание первого порядка и запаздывание.

Допустим, что S в уравнении В-1 является вводом в запаздывание, выход из которого обозначен индексом W (см. рис. B–2). Уравнения экспоненциального запаздывания первого порядка могут быть представлены в следующем виде:

,

B-2, L

,

B-3, R

где

L — уровень в запаздывании (единицы S, умноженные на время);

S — входящий поток информации (в своих единицах измерения);

W — исходящий поток из запаздывания (те же единицы, что и S);

Т — постоянная времени экспоненциального выравнивания (единицы времени).

Уравнение В-3 может быть записано для более раннего периода:

.

Подставив это значение в уравнение В-2, получим

.

Если мы теперь предположим, что L.K = (T)(A.K), то после простых преобразований получим уравнение

,

которое идентично уравнению В-1. Следовательно, уравнение экспоненциального выравнивания и уравнение запаздывания первого порядка эквивалентны.

Экспоненциальное выравнивание первого порядка вызывает запаздывание в потоках информации той же величины и формы, что и экспоненциальное запаздывание первого порядка. Постоянная времени выравнивания эквивалентна постоянной запаздывания, которая рассматривалась в главе 8.

Запаздывание, создаваемое выравниванием, может быть представлено графически. На рис. В-3 представлено равномерное усреднение.

Рис. B-3. Запаздывание, обусловленное равномерным усреднением.

Действительные значения рассматриваемой переменной показаны равномерно увеличивающимися. В любой момент времени средняя величина равна значению действительной величины в середине периода усреднения; другими словами, средняя величина равна действительной с запаздыванием в 1/2 интервала усреднения.

Рис. В-4. Запаздывание, обусловленное экспоненциальным усреднением.

На рис. В-4 показано запаздывание при экспоненциальном выравнивании для случая равномерно возрастающей переменной. Как видно из графиков, запаздывание должно быть равным постоянной времени T; это можно легко доказать, рассмотрев подобные треугольники:

,

,

где у является изменением среднего значения величины, изображенной на рисунке, и равно правой части уравнения B–1, которое так же отражает изменение значения средней величины. Поэтому величина Т, отображающая на рисунке запаздывание в получении среднего значения по сравнению с действительным, обязательно должна быть равна по величине постоянной времени в уравнении B–1.

Постоянное запаздывание, обусловленное экспоненциальным выравниванием, как это показано на рис. В-4, имеет место только в случае линейно изменяющихся входных данных. При нелинейных потоках информации запаздывание, связанное с выравниванием, будет определяться более сложно. Можно показать, что для синусоидально изменяющихся входных данных запаздывание никогда не превышает четверти периода колебания на входе.

При выравнивании поток информации искажается как по амплитуде, так и во времени. Характер искажений зависит от величины изменений, которые вносятся во входную информацию, от используемого типа выравнивания и объема выравнивания, который определяется видом и степенью нежелательных возмущений, существующих в информации. Почти все потоки информации выравниваются либо посредством формальных математических приемов, либо под воздействием психологических суждений, либо с использованием того и другого методов выравнивания, прежде чем они лягут в основу принимаемых решений. Запаздывания и усиления, обусловленные процессом выравнивания, как мы видели в части III, существенно влияют на динамическое поведение системы.

Даже в тех случаях, когда модель проигрывается при отсутствии помех (как это изображено на большинстве рисунков в части III), процессы выравнивания должны быть отражены в модели. Выравнивание, обусловленное присутствием помех, неизбежно проявляется как фильтр, искажающий желаемую информацию. Эти искажения должны быть отражены даже при отсутствии помех, если мы хотим, чтобы система была правильно отображена в модели.

<p>Приложение C</p><p>ШУМЫ</p>
Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес
История ИП. История взлетов и падений одного российского индивидуального предпринимателя
История ИП. История взлетов и падений одного российского индивидуального предпринимателя

Изначально эта книга называлась «Из грязи в князи и назад, и так много раз подряд». За 12 предпринимательских лет, прежде чем вывести на федеральный уровень архитектурно-брендинговую компанию DeVision, основать главный форум для застройщиков СНГ и вместе с партнерами создать девелоперскую компанию в Тюмени, я познал много падений – провел убыточное федеральное мероприятие в Москве, открыл и закрыл несколько ресторанов, многократно банкротился, пережил увольнение, пятисекундную остановку сердца и серьезную драму в личной жизни. Если вы – начинающий предприниматель, эта книга станет спасательным кругом, когда вам будет казаться, что уже ничего нельзя исправить. Но если вы в бизнесе много лет, у вас не раз возникнет чувство, будто вы перечитываете свой дневник. В этой книге я рассказал все, что знаю о бизнесе, не утаив ничего. Хочется, чтобы после прочтения последней страницы ваша жизнь стала лучше.

Илья Андреевич Пискулин , Илья Пискулин

Деловая литература / Управление, подбор персонала / Финансы и бизнес
Моя жизнь
Моя жизнь

Мемуары выдающегося менеджера XX века «Моя жизнь» – одна из самых известных настольных книг предпринимателей, в которой содержится богатейший материал, посвященный вопросам организации деятельности. Выдержав более ста изданий в десятках стран мира, автобиография Генри Форда не потеряла своей актуальности для многих современных экономистов, инженеров, конструкторов и руководителей. За плечами отца-основателя автомобильной промышленности Генри Форда – опыт создания производства, небывалого по своим масштабам и организации. Снискав славу гениального неуча-слесаря, величайший промышленник 20 столетия долгое время хранил молчание, не выступая ни в прессе. И только к шестидесяти годам известный миллиардер написал книгу, в которой соединены достижения науки двадцатого века с его собственными изобретениями и достижениями в области техники, коммерции и менеджмента.

Генри Форд

Деловая литература