Если показательное запаздывание постоянной общей продолжительности дробить на увеличивающееся число последовательных секций первого порядка все меньшей и меньшей величины, то начальное запаздывание в ответ на импульс увеличивается, прежде чем возникает реакция на выходе. При этом подъем кривой выхода происходит круче, круче становится и спад этой кривой; в результате нулевое значение темпа на выходе наступает быстрее. Последний, конечный член этой группы запаздываний представляет собой гипотетическое запаздывание неопределенного порядка[44]. Его иногда называют дискретным, или канальным, запаздыванием. Рис. 8–6 дает представление о показательном запаздывании неопределенного порядка, где на выходе ничего не происходит до тех пор, пока не пройдет время запаздывания
При отображении запаздывания, связанного с установлением темпа производства на предприятии после его реконструкции, у нас может появиться желание получить более длительное начальное запаздывание, чем создающееся в случае с показательным запаздыванием третьего порядка. Так как последовательное расположение показательных запаздываний увеличивает начальное запаздывание и крутизну восходящей ветви кривой, то в этом случае можно будет воспользоваться, например, запаздыванием шестого порядка (то есть двумя последовательными запаздываниями третьего порядка).
После того как будет найдена функциональная форма, качественно соответствующая накопленному нами знанию фактов, отпадет необходимость в соответствующих данных для дальнейшего уточнения функции. Это положение может служить иллюстрацией общих соображений в разделе 3.7 об источниках информации для разработки моделей. Как только удастся установить вид функции, которая качественно удовлетворяет характеристикам реальной системы, как в неустановившихся, так и в стабилизированных условиях, лучше всего, вероятно, перейти к другим частям модели, пока испытания сами не выявят ее чувствительности к некоторым принятым допущениям[45].
На рис. 8–7 показаны реакции на выходе запаздываний, выраженных показательной функцией первого, второго, третьего, шестого и неопределенного порядков для случая, когда ввод является импульсным. Это значит, что в нулевой момент времени в запаздывание вводится определенное количество и на этом ввод прекращается. Проследим за темпом на выходе. По оси абсцисс на рис. 8–8 отложено время в единицах общего среднего запаздывания D, которое определяется таким образом, чтобы при
Нетрудно заметить, что запаздывание п-го порядка эквивалентно
По оси ординат на рис. 8–7 отложен темп потока на выходе, отнесенный к начальному темпу запаздывания первого порядка, который равен
На рис. 8–8 показан выход из запаздываний первого, второго, третьего, шестого и неопределенного порядков при скачкообразном характере изменения
Глава 9
ПРАВИЛА И РЕШЕНИЯ