Нелинейные функции решения. Нелинейные модели упоминались в разделе 3.1. Нелинейность модели проявляется в функциях решений, регулирующих темпы потоков. Линейная зависимость — это такая зависимость, в которой вводимые факторы комбинируются путем простого сложения или вычитания для определения результата. Предположим, что темп
Здесь переменные
Напротив, нелинейная функция решения может принимать самые разнообразные формы, как в следующем примере:
Здесь мы видим два источника нелинейности. В отношении члена
Для правильного описания поведения фирмы существенное значение имеют нелинейности этих двух типов. Поясним это примерами. Первая форма нелинейности имела место, когда влияние фактора, воздействующего на решение, не было просто пропорционально этому фактору. Например, имеющийся в наличии запас товаров для продажи воздействует на темп поставки товаров. Если запасы низки, то недостаток товаров ограничивает возможности поставки; в пределах «нормальных» запасов товаро-материальных ценностей изменения этих запасов окажут очень незначительное влияние на уровень поставки. Можно предположить, что большинство факторов, вводимых в функции решения, будут нелинейными и их влияние будет увеличиваться или уменьшаться с изменением пределов переменных.
Второй источник нелинейности в функциях решения возникает тогда, когда решение зависит не порознь от двух или большего числа вводимых переменных, а является результатом произведения или иной взаимозависимости этих переменных. В предшествующем примере поставка товаров не является независимым и изолированным ответом на запасы товаров и на объем полученных, но невыполненных заказов на эти товары. Мы не можем просто сложить эти две изолированные величины. Если нет заказов, то размеры запасов не имеют значения и не предопределяют поставку; если нет запасов, за счет которых может быть произведена поставка, то заказы не вызовут поставку.
Эти два вида нелинейности часто встречаются вместе. Рассмотрим зависимость темпов производства от имеющегося уровня- численности рабочих и необходимого для производства оборудования. На рис. 9–5 показано, как темп производства может повышаться с увеличением численности работающих на предприятии. Сначала, когда каждый вновь нанятый рабочий может воспользоваться любым необходимым оборудованием, производительность человеко-часа высока и кривая всего производства, круто поднимается вверх. После того, как достигается максимальная производительность оборудования, увеличение выпуска продукции на каждого рабочего снижается. Дальнейший рост числа работающих в конце концов приводит к максимально возможному темпу производства при данном оборудовании. Если и дальше увеличивать число рабочих, то это вызовет простои, беспорядок и потерю в темпе производства. Мы видим, что при данном количестве оборудования темп производства не пропорционален численности рабочих и представляет собой нелинейную функцию. Так как влияние любого данного изменения численности рабочих на темп производства зависит от количества оборудования, то эти два ввода воздействуют друг на друга. При недостаточном числе рабочих колебание количества оборудования от
Линейные приближения к этим нелинейным отношениям обычно не дают удовлетворительного результата. Нормальные операции проводятся в достаточно широких границах, так что их нелинейность имеет первостепенное значение. Очень часто