Читаем Основы объектно-ориентированного программирования полностью

Давайте займемся исследованием примеров этих двух случаев. Рассмотрим для начала полиморфную структуру данных, такую как список геометрических фигур:


figlist: LIST [FIGURE]



В предыдущих лекциях рассматривалась иерархия наследования фигур. Пусть нам необходимо найти самую длинную диагональ среди всех прямоугольников списка (и вернуть -1, если прямоугольников нет). Сделать это непросто. Выражение item (i).diagonal, где item (i) - i-й элемент списка, идет вразрез с правилом вызова компонентов: item (i) имеет тип FIGURE, а этот класс, в отличие от его потомка RECTANGLE, не содержит в своем составе компонента diagonal. Решение, используемое до сих пор, изменяло определение класса, - в нем появлялся атрибут, задающий тип фигуры. Однако это решение не столь элегантно, как нам хотелось бы.

Теперь пример второго рассматриваемого случая. Пусть имеется механизм хранения объектов в файле или передачи их по сети, аналогичный универсальному классу STORABLE, описанному нами ранее. Для получения объекта используем:


my_last_book: BOOK

...

my_last_book := retrieved (my_book_file)



Значение, возвращаемое retrieved, имеет тип STORABLE библиотеки Kernel, хотя с тем же успехом оно может иметь тип ANY. Но мы не ожидали STORABLE или ANY, - мы надеялись получить именно BOOK. Присваивание my_last_book нарушает правило Совместимости Типов.

Даже если написать собственную функцию retrieved, учитывающую специфику приложения и объявленную с подходящим типом, вам не удастся полностью на нее положиться. В отличие от объектов вашего ПО, в котором согласованность типов гарантируется действующими правилами, данный объект к вам поступает со стороны. При его получении вы могли ошибиться в выборе имени файла и прочитать объект EMPLOYEE вместо объекта BOOK, файл мог быть подделан, а при сетевом доступе данные могли быть искажены при передаче.

Проблема

Из этих примеров ясно: нам может понадобиться механизм удостоверения типа объекта.

Решение этой проблемы, возникающей в специфических, но критически важных случаях, должно быть найдено без потери преимуществ ОО-стиля разработки. В частности, мы не хотим возвращаться к той схеме, которую сами и осудили:


if "f типа RECTANGLE" then

...

elseif "f типа CIRCLE" then

...

и т.д.



Это решение идет вразрез с принципами Единственного Выбора и Открыт-Закрыт. Избежать риска потерь нам помогут два обстоятельства.

[x]. Нет смысла создавать универсальный механизм выяснения типа объектов. В том и другом случае тип объекта предположительно известен. Все, что нам нужно, - это способ проверки гипотезы. Определение принадлежности объекта данному типу носит более частный характер, чем запрос на определение типа. Кроме того, нам не требуется вводить в наш язык никаких операций над типами, к примеру, их сравнение - ужасающая мысль.

[x]. Как уже говорилось, мы не должны влиять на правило Вызова Компонентов. Ни при каких обстоятельствах мы не должны проверять применимость вызова компонента, если класс прошел статистическую проверку. Все, что нам нужно, - это более свободная версия другого правила - правила совместимости типов, позволяющая "испытать тип" и проверить результат.

Механизм решения

И снова запись механизма решения напрямую вытекает из анализа поставленной проблемы. Введем новую форму присваивания, назвав ее попыткой присваивания (assignment attempt):


target ?= source



Знак вопроса указывает на предварительный характер операции. Пусть сущность target имеет тип T, тогда попытка присваивания дает следующий результат:

[x]. если source ссылается на объект совместимого с T типа, присоединить target к объекту так, как это делает обычное присваивание;

[x]. иначе (если source равно void или ссылается на объект несовместимого типа) приписать target значение void.

На эту инструкцию не действуют никакие ограничения типов, кроме одного: тип target (T) должен быть ссылочным.

Новое средство быстро и элегантно решает поставленные проблемы и, прежде всего, дает возможность обращаться к объектам полиморфной структуры с учетом их типа:


maxdiag (figlist: LIST [FIGURE]): REAL is

-- Максимальная длина диагонали прямоугольника в списке;

-- если прямоугольников нет, то -1.

require

list_exists: figlist /= Void

local

r: RECTANGLE

do

from

figlist.start; Result := -1.0

until

figlist.after

loop

r ?= figlist.item

if r /= Void then

Result := Result.max (r.diagonal)

end

Перейти на страницу:

Похожие книги

Основы информатики: Учебник для вузов
Основы информатики: Учебник для вузов

Учебник состоит из двух разделов: теоретического и практического. В теоретической части учебника изложены основы современной информатики как комплексной научно-технической дисциплины, включающей изучение структуры и общих свойств информации и информационных процессов, общих принципов построения вычислительных устройств, рассмотрены вопросы организации и функционирования информационно-вычислительных сетей, компьютерной безопасности, представлены ключевые понятия алгоритмизации и программирования, баз данных и СУБД. Для контроля полученных теоретических знаний предлагаются вопросы для самопроверки и тесты. Практическая часть освещает алгоритмы основных действий при работе с текстовым процессором Microsoft Word, табличным редактором Microsoft Excel, программой для создания презентаций Microsoft Power Point, программами-архиваторами и антивирусными программами. В качестве закрепления пройденного практического курса в конце каждого раздела предлагается выполнить самостоятельную работу.

Вадим Васильевич Лысенко , Лариса Александровна Малинина , Максим Анатольевич Беляев

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Об интеллекте
Об интеллекте

В книге "Об интеллекте" Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему "память-предсказание" как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Джефф Хокинс предполагает, что идеи, сформулированные им в книге "Об интеллекте", лягут в основу создания истинного искусственного интеллекта - не копирующего, а превосходящего человеческий разум. Кроме этого книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.Книга рекомендуется всем, кого интересует устройство человеческого мозга и принципы его функционирования, а также тем, кто занимается проблемами разработки искусственного интеллекта.

Джефф Хокинс , Джеф Хокинс , Сандра Блейксли , Сандра Блэйксли

Зарубежная компьютерная, околокомпьютерная литература / Технические науки / Прочая компьютерная литература / Образование и наука / Книги по IT