Так по А.П. Шенникову (1964), «конечная» плотность спелого древостоя в хороших условиях (бонитет I) составляет у ели – 724, у сосны – 470, у дуба – 309 деревьев на 1 га. Однако при худших условиях (бонитет IV–V классов) количество деревьев резко увеличивается и составляет соответственно 2095, 1310, 778. Лесоводы знают эту закономерность и проводят «рубки ухода» как меру по ускорению процесса самоизреживания за счет вырубания более слабых деревьев.
Следует заметить, что феномен самоизреживания вследствие конкуренции особей внутри популяции и выживания наиболее сильных характерен только для растений. Как подчеркивают М. Бигон и др. (1989), у животных процесс самоизреживания не происходит, и уменьшение плотности популяций имеет более сложную природу.
1. Что такое таблица выживания?
2. Расскажите о кривых выживания. Приведите примеры популяций, соответствующих кривым выживания разного типа.
3. Как зависит конечная плотность спелого древостоя от благоприятности условий среды?
7.3. Модели роста популяций
В экологии существует несколько моделей роста популяций (т.е. закономерностей изменения численности популяции при ее росте «от нуля»), главные из них –
О тенденции быстрого неограниченного увеличения числа особей вида знал К. Линней. Однако представления об экспоненциальном росте популяций в начале прошлого столетия сформулировал Т. Мальтус: количество особей в популяции увеличивается в геометрической прогрессии. В качестве примера Мальтус привел гипотетический рост народонаселения страны при условии естественной смертности (при отсутствии эпидемий и войн). Представления о способности любой популяции к экспоненциальному росту является краеугольным камнем популяционной экологии. П.В. Турчин (2002) считает экспоненциальный рост главным законом экологии, близким по значению к закону Ньютона в физике.
Модель экспоненциального роста описывается
Nt = N0 еrt,
в котором Nt – численность популяции через очередной промежуток времени (t),
N0 – исходная численность,
е – основание натурального логарифма,
r – коэффициент размножения (репродуктивный потенциал, разность относительной рождаемости и относительной смертности, т.е. число родившихся или умерших особей отнесенное к числу особей популяции в начале промежутка времени t).
Рис. 15. Экспоненциальная модель роста численности популяции одноклеточного организма, делящегося каждые 4 часа.
Чтобы рост популяции соответствовал этой модели, величина коэффициента r должен быть постоянной, т.е. должно быть постоянным среднее количество потомков на одну особь (если r = 0, т.е. рождаемость равна смертности, то численность популяции не растет).
В зависимости от величины r увеличение численности особей может быть быстрым и достаточно медленным. Ч. Дарвин рассчитал потенциальные возможности роста популяций разных организмов при реализации экспоненциальной модели. По его оценкам, число потомков одной пары слонов – животных, размножающихся чрезвычайно медленно, – через 750 лет достигнет 19 млн. Если же обратиться к организмам, живущим не так долго и размножающимся более быстро, то цифры будут еще более впечатляющими. У бактерий, которые делятся каждые 20 минут, из одной бактериальной клетки через 36 часов может образоваться биомасса, которая покроет весь земной шар слоем толщиной 30 см, а еще через 2 часа – слоем в 2 м.
«Поскольку ни бактерии, ни слоны не покрывают землю сплошным слоем, очевидно, что на самом деле в природе экспоненциальный рост популяций организмов или не происходит вообще, или же происходит, но в течение непродолжительного времени, сменяясь затем спадом численности или выходом ее на стационарный уровень» (Гиляров, 1990, с. 77).