С эстетической точки зрения, картина тем ценнее, чем больше она заставляет нас замечать то, чего мы никогда не ожидали увидеть. На анализируемом графике обнаруживается одна группа точек (выделенная оранжевым цветом для автомобилей класса 2-Seater, «двуместные») в которой кажется, что они выходят за пределы линейного тренда. Эти автомобили имеют более высокий пробег, чем можно было бы ожидать. Как объяснить подобное? Давайте предположим, что данные автомобили являются гибридами. Один из способов проверить эту гипотезу – посмотреть на значение переменной class для каждого автомобиля. Переменная class из набора данных mpg разделяет автомобили на такие группы, как compact, midsize и SUV. Если выделяющиеся точки являются гибридными автомобилями, их следует классифицировать как компактные автомобили или, возможно, малолитражные (имейте в виду, что эти исторические данные были собраны раньше, чем стали популярными гибридные грузовики и внедорожники).
Можно добавить третью переменную, например class, к двумерному графику исходя из эстетических соображения. Эстетика – это визуальное свойство объектов в вашей диаграмме. Эстетика включает в себя такие вещи, как размер, форма или цвет точек. Изобразим точки различными способами путем изменения перечисленных значений свойств их оформления. Так как мы уже используем это слово "значение" для описания числовых данных, то будем использовать слово "уровень" для описания художественных, нечисловых, эстетических свойств. Мы меняем уровни размера, формы и цвета точки, чтобы сделать точка маленькая, треугольная или синяя.
В результате, появляется возможность передать информацию о данных с помощью сопоставление эстетики на графике с переменными в наборе данных. Например, можно сопоставить цвета точек (color) с переменной класса автомобиля (class), чтобы выявить класс каждого автомобиля. Для этого, после x = displ, y = hwy в список аргументов функции aes через запятую необходимо добавить color = class.
Чтобы отобразить настройки форматирования в переменную, сопоставляется имя настраиваемого параметра, например цвета (color), с именем переменной внутри aes. ggplot2 автоматически присвоит уникальный цвет для каждого уникального значения переменной, а также добавит объяснение, какие уровни каким значениям соответствуют.
Цветом показано, что многие из необычных точек охватывают двухместные автомобили. Эти автомобили не похожи на гибриды, и выглядят, по сути, как спортивные автомобили. Спортивные автомобили имеют большие двигатели, такие как внедорожники или пикапы, но небольшие кузова, такие как средние и компактные автомобили, что улучшает их экономичность. В ретроспективе, эти автомобили вряд будут гибридами, так как у них есть большие двигатели.
В приведенном выше примере сопоставлен класс с цветом, но можно сопоставить класс с размером точки точно так же. В этом случае размер каждой точки будет демонстрировать классовую принадлежность. Достаточно лишь заменить color = class на size = class, но будет получено предупреждение от интерпретатора, так как сопоставление неупорядоченной переменной (class) с упорядоченной категорией размера (size) не самая лучшая идея.
#> Предупреждение: использование параметра size для дискретной переменной не рекомендуется.
Кроме того, можно сопоставить класс с уровнем прозрачности точек (alpha), либо с их формой (shape). Для этого достаточно заменить color = class на alpha = class, либо на shape = class соответственно. Но в последнем случае ggplot2 может использовать только до шести фигур одновременно, по умолчанию все остальные группы будут отключены.
Для каждой эстетики используется aes, чтобы связать имя эстетического объекта с переменной для отображения. Функция aes собирает вместе каждое из эстетических отображений, используемых слоем и передает их в аргумент отображения слоя. Синтаксис выделяет полезную информацию об осях
По аналогии можно задавать свойства объекта geom вручную, например, можно сделать все точки на диаграмме зелеными, если использовать следующий синтаксис:
geom_point(mapping = aes(x = displ, y = hwy), color = "green")