Дело в том, что в R используется арифметика конечной точности, так как затруднительно хранить бесконечное количество цифр, либо реализовывать алгебраический подход. Поэтому каждое число в R является приближением, а вместо оператора == нередко используется функция near, позволяющая сравнивать приближенные величины:
near(sqrt(5) ^ 2, 5)
# > [1] TRUE
Несколько аргументов функции filter перечисленные через запятую равносильны объединению условий союзом «и», при этом, каждое выражение должно оказаться истинным, чтобы из входных данных соответствующая запись была сохранена в выходные данные. Для остальных логических связок можно использовать булевы операторы: & это «и», | это «или», ! это отрицание «не», xor(
Следующий код находит все рейсы, которые вылетели в феврале или марте:
filter(flights, month == 2 | month == 3)
Если попытаться ввести команду буквально
filter(flights, month == (2|3))
то вместо желаемого будут найдены все месяцы равные результату булевой операции 2|3, значение которой обращается в TRUE. В числовом контексте TRUE становится равным единице 1, поэтому будут найдены все январские вылеты, что вовсе не соответствует задуманному.
Полезным клавиатурным сокращением для решения обозначенной проблемы является
filter(flights, month %in% c(2, 3))
Иногда можно упростить сложное выражение вспомнив законы де Моргана из курса математической логики: !(x & y) == !х | !y, и !(x | y) == !x & !y. Например, если нужно найти рейсы, которые не задерживались (по прилету или отправлению) более чем на час, можно воспользоваться любым из следующих фильтров:
filter(flights,!(arr_delay > 60 | dep_delay > 60))
filter(flights, arr_delay <= 60, dep_delay <= 60)
Кроме & и |, в R есть && и ||, но не используйте их сейчас, позже узнаете, при каких условиях уместно их применение.
Всякий раз, когда используется сложное составное выражение в filter, предпочтительнее разбить выражение на несколько вспомогательных, это значительно упрощает последующую проверку работы. Вскоре узнаем, как быстро создать новые переменные. Одна важная особенность R, которая может затруднить фильтрацию, это пропущенные значения, или недоступные (NA), которые представляют собой неизвестное значение, поэтому пропущенные значения являются изгоями, практически любая операция с участием NA приведет к NA.
NA > 1
#> [1] NA
2 == NA
#> [1] NA
NA + 3
#> [1] NA
NA / 4
#> [1] NA
Самым алогичным результатом может показаться следующий:
NA == NA
#> [1] NA
Но его легко понять в конкретном контексте: совпадает ли содержимое двух ящиков, внутри которых неизвестно что? Мы не знаем! Если хотите определить, отсутствует ли значение конкретной переменной, можно воспользоваться функцией is.na, в качестве аргумента задав интересующее имя. Функция filter отбирает только те строки, для проверяемые условия обращаются в TRUE, при этом исключаются как значения FALSE, так и NA. Если хотите сохранить пропущенные значения, то запрашивайте их в явном виде:
filter (flights, is.na(month) | month > 1)
Упражнения
1. Найти все рейсы, которые: имели задержку прибытия на два и более часа; прилетели в Хьюстон; управлялись компанией Delta; улетели летом; прибыл с опозданием более чем на два часа; задержались они как минимум на час, но наверстали более 30 минут в полете; отбыли между полуночью и 6 утра (включительно).
2. Функция between из пакета dplyr тоже полезна для фильтрации. А что она делает? Можно ли использовать её для упрощения кода, необходимого для получения ответов в предыдущем задании?
3. Сколько рейсов имеет отсутствующее значение dep_time? Какие еще переменные у них отсутствуют? Что могут представлять собой эти записи в базе данных?
4. Почему значение NA^0 определено, NA / TRUE не определено, а FALSE & NA определено? Можете ли сформулировать общее правило, охватывающее и случай NA * 0?
Функция arrange работает аналогично функции filter, за исключением того, что вместо выбора строк, сортирует их. На вход принимаются данные и набор имен столбцов (или более сложных выражений), чтобы задать отношение порядка по возрастанию. Если укажете более одного имени столбца, то каждый последующий столбец будет сортировать значения строк с равными значениями из предыдущих столбцов:
arrange(flights, year, month, day)
Используя desc можно переданный в аргументе столбец упорядочить по убыванию значений:
arrange(flights, desc(dep_delay))
Пропущенные значения (NA) всегда оказываются в конце сортировки.
Упражнения
1. Как использовать функцию arrange для переноса всех пропущенных значений в начало списка? (Подсказка: применимо is.na).
2. Сортировка рейсов позволяет найти самые задерживаемые рейсы. Найдите рейсы, которые вылетали пунктуальнее всех.
3. Отсортируйте рейсы так, чтобы найти самые скоростные перелёты.
4. Какие рейсы летали дальше всех? Какой маршрут был самым коротким?