Читаем Основы статистической обработки педагогической информации полностью

неотмененные %>%

group_by(year, month, day) %>%

summarise(средняя_задержка = mean(dep_delay))

Всякий раз, когда осуществляется подобная агрегация, правилом хорошего тона является добавление счетчика числа учтенных значений функцией n, либо путём подсчета используемых непустых значений командой sum(!is.na(x)). Таким способом можно удостовериться, что не делается поспешных выводов на основании выборок очень малых объемов. Например, сгруппировав рейсы по бортовому номеру, хранящемуся в переменной tailnum из таблицы неотмененных рейсов, на графике посмотрим каковы самые высокие задержки в среднем на борт:

задержки <– неотмененные %>%

group_by(tailnum) %>%

summarise(

средняя_задержка = mean(arr_delay)

)

ggplot(data = задержки, mapping = aes(x = средняя_задержка)) +

geom_freqpoly(binwidth = 5)



Неужели много самолетов со средней задержкой рейса более 5 часов (300+ минут)? На самом деле не всё так печально, как могло показаться при поверхностном ознакомлении. Можно получить более глубокое представление об опозданиях, если нарисовать диаграмму рассеяния количества рейсов относительно средней задержки:

задержки <– неотмененные %>%

group_by(tailnum) %>%

summarise(

средняя_задержка = mean(arr_delay, na.rm = TRUE),

количество_выполненных_рейсов = n

)

ggplot(data = задержки, mapping = aes(x = количество_выполненных_рейсов,

y = средняя_задержка)) +

geom_point(alpha = 1/15)



Неудивительно, что на частых рейсах задержек практически не наблюдается, а в основном задерживаются те борта, чьих рейсов мало. Что характерно, и в принципе соответствует статистическому закону больших чисел: всякий раз, когда ищется среднее значение (или другая сводка) в сравнении с размером группы, приходят к выводу, что вариативность вычисленного значения уменьшается по мере увеличения объема выборки.

Именно поэтому, когда решаете аналогичные задачи, полезно отфильтровывать группы с наименьшим количеством наблюдений, тогда можно будет увидеть общие закономерности и уменьшить выбросы значений на малых группах. На примере следующего кода будет демонстрирован удобный шаблон интеграции ggplot2 с каналами в dplyr. Немного странным может показаться смешение стилей %>% и +, дело привычки, со временем это станет естественным. Отфильтруем на предыдущем графике экспериментальные самолёты с малым количеством вылетов, не превышающим 33:

задержки %>% filter(количество_выполненных_рейсов > 33) %>%

ggplot(mapping = aes(x = количество_выполненных_рейсов,

y = средняя_задержка)) +

geom_point(alpha = 1/15)



Полезным сочетанием клавиш RStudio является Ctrl + Shift + P, для повторной отправки ранее отправленного фрагмента из редактора в консоль. Это очень удобно, когда экспериментируете с граничным значением 33 в приведенном выше примере: отправляете весь блок в консоль нажатием Ctrl + Enter, а затем изменяете значение границ фильтрации на новое и нажимаете Ctrl + Shift + P, чтобы повторно отправить весь блок в консоль.

Есть еще одна хрестоматийная иллюстрация к применению изложенного метода. Рассмотрим среднюю эффективность бейсбольных игроков относительно количества подач, когда они находятся на базе. Воспользуемся данными из пакета Lahman для вычисления среднего показателя эффективности (количество попаданий / количество попыток) каждого ведущего игрока бейсбольной лиги.

Историческая справка. Не сказать чтобы бейсбол был нашей национальной забавой, но многие в России знают «сколько пинчеров на базе», и именно россиянин, уроженец Нижнего Тагила, Виктор Константинович Старухин стал первым питчером, кто одержал 300 побед в японской бейсбольной лиге, являясь одним из лучших бейсболистов мира в 20 веке.

Когда строится график визуализирующий уровень мастерства игроков, измеряется среднее значение эффективных попаданий по мячу по отношению к общему количеству предпринятых попыток, возникает две статистические предпосылки:

1. Как было в примере с самолётами, вариативность показателей уменьшается при увеличении количества наблюдений.

2. Существует положительная корреляция между результативностью и элементарно предоставляемой возможностью бить по мячу. Дело в том, что команды контролируют свой состав, поэтому очевидно, что на поле выходят только лучшие игроки из лучших.

Предварительно преобразуем сведения об ударах игроков в табличную форму, так они легче воспринимаются:

удары <– as_tibble(Lahman::Batting)

эффективность <– удары %>%

group_by(playerID) %>%

summarise(

результативность = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),

возможность = sum(AB, na.rm = TRUE)

)

эффективность %>%

filter(возможность > 100) %>%

ggplot(mapping = aes(x = возможность, y = результативность)) +

geom_point +

geom_smooth(se = FALSE)

Функция geom_smooth здесь формирует график методом обобщенных аддитивных моделей с интегрированной оценкой гладкости (method = "gam") рассчитывая значения по формуле formula = y ~ s(x, bs = "cs"), так как имеется более 1 000 наблюдений.



Перейти на страницу:

Похожие книги

10 заповедей коммуникационной войны. Как победить СМИ, Instagram и Facebook
10 заповедей коммуникационной войны. Как победить СМИ, Instagram и Facebook

Благодаря развитию социальных сетей и интернета информация сейчас распространяется с ужасающей скоростью – И не всегда правдивая или та, которую мы готовы раскрыть. Пост какого-нибудь влогера, который превратит вашу жизнь в кромешный ад, лишит ваш бизнес потребителей, заставит оправдываться перед акционерами, партнерами и клиентами всего лишь вопрос времени.Как реагировать, если кто-то сообщает ложные сведения о вас или вашем бизнесе? Что делать, если вы оказались вовлечены в публичный конфликт? Как правильно признать свою ошибку?Авторы книги предлагают 10 универсальных заповедей – способов поведения, которые помогут вам выйти из сложных коммуникационных ситуаций, а два десятка практических примеров (как положительных, так и отрицательных) наглядно демонстрируют широту и особенности их применения.Вряд ли у вас получится поставить эту книгу на полку, прочитав один раз. Оставьте ее на виду, обращайтесь к ней как можно чаще, и тогда у вас появится шанс выжить в коммуникационном армагеддоне XXI века.

Дмитрий Солопов , Каролина Гладкова

Менеджмент / Финансы и бизнес
Правила команды. Искусство думать вместе
Правила команды. Искусство думать вместе

Как и для чего создаются команды? Как команды развиваются, как их правильно обучать и мотивировать? Как распределяются роли в команде и каковы функции лидера?Авторы книги, Максим Поташев и Павел Ершов, опираясь на свой многолетний практический опыт управления командами как в бизнесе, так и в игре «Что? Где? Когда?», рассказывают, как превратить собранных вместе людей в настоящую команду и как сделать ее эффективной.Вы узнаете о жизненном цикле команды, компетенциях, функциональных ролях, командной культуре и вопросах лидерства.В книге вы также найдете интересные тесты, с помощью которых определите свою оптимальную роль в команде, оцените, какие компетенции следует развивать, и поймете, лидером какого типа вы можете стать.

Максим Оскарович Поташев , Павел Михайлович Ершов

Менеджмент / Финансы и бизнес
Несломленный дух
Несломленный дух

На милых улицах Москвы мечта молодого футболиста сталкивается с жестокой реальностью. Зажатый между своей горящей страстью и скептицизмом семьи, этот одаренный 17-летний юноша должен пройти опасный путь к успеху. Пытаясь занять место в профессиональных лигах, неожиданно появляются союзники и яростные соперники, испытывающие не только его навыки, но и характер. Разрушительная травма угрожает разрушить все, над чем он работал, заставляя его глубоко копнуть и переопределить свои амбиции. С поддержкой строгого наставника и девушки, которая верит в него, сможет ли он преодолеть все препятствия? Когда время на самом важном матче его жизни истекает, он сталкивается с моментом, который определит его будущее. Эта захватывающая история настойчивости, любви и прекрасной игры исследует, что на самом деле значит преследовать мечту – и цену, которую нужно заплатить, чтобы ее достичь.

Александр Кар

О бизнесе популярно / Управление, подбор персонала / Менеджмент / Финансы и бизнес
100 уроков самбо для руководителя
100 уроков самбо для руководителя

Уважаемые читатели, вы держите в руках действительно необычную книгу. И написана она совершенно особым образом. Возможно, вы слышали про уроки управленческой борьбы на основе китайских стратагем или читали «Книгу 5 колеи» знаменитого японского фехтовальщика Миямото Мусаси. Ни для кого не секрет, что уроки единоборств давно используются в управленческой практике и бизнесе. Данная книга уникальна тем, что базируется на опыте российского национального вида спорта – борьбе самбо. Предназначена она в первую очередь для отечественных управленцев. Книга не только передает очень интересный управленческий опыт, но и предоставляет внимательному читателю ключики к загадочной русской душе. Книга написана «на двоих»: один автор – руководитель высокого уровня с богатейшим управленческим опытом Вениамин Каганов, второй – известный бизнес-тренер и оригинальный писатель, суворовед Вячеслав Летуновский. Каждый урок сопровождается реальными примерами из жизни и управленческой практики.В формате PDF A4 сохранен издательский макет книги.

Вениамин Шаевич Каганов , Вячеслав Владимирович Летуновский

Менеджмент / Финансы и бизнес