Значительным шагом вперед (хотя и неоднозначным как решение для проблемы измерений) является концепция квантовой декогерентности, которая устраняет («декогерирует») проблему квантовой интерференции между различными возможными результатами экспериментов за счет взаимодействия между квантовой системой и окружающей ее средой. В соответствии с этой концепцией классическая физика появляется в результате утраты квантовой интерференции. Классический мир крупных неквантовых объектов возникает тогда, когда мы принимаем в расчет взаимодействие со средой. Некоторые физики представляют декогерентность как естественное продолжение копенгагенской интерпретации с учетом того, что процесс измерений полностью уничтожает какую бы то ни было квантовую когерентность в волновой функции. Другие считают декогерентность продолжением многомировой интерпретации Эверетта, в которой она является причиной расхождения альтернативных миров и историй. Вариация концепции квантовой декогерентности, известная как «декогерентный исторический формализм» или «согласующиеся истории», была предложена Робертом Гриффитсом в 1984 году и независимо от него разработана Роланом Омне, а затем повторно открыта и применена в квантовой космологии Марри Гелл-Маном и Джеймсом Хартлом в 1990 году. Этот вариант предлагает рассматривать всю Вселенную в качестве квантовой системы. Трудность в том, что, так как Вселенная считается «закрытой системой», в ней отсутствуют внешние наблюдатели или среда для декогеренции глобальной волновой функции. Переход от квантовой Вселенной к классической произошел в процессе ее собственной эволюции, так как различные варианты истории, каждый из которых включает в себя свой набор вероятностей, развиваются независимо друг от друга (то есть декогерентно по отношению к целому). Конкретные акты декогеренции случаются в результате конкретных событий (взаимодействий между частицами), которые происходят в рамках определенной временной линии. Мы живем в одном сегменте этой постоянно разветвляющейся истории, и в нем же находится Вселенная со свойствами, которые мы регистрируем в ходе измерений. К сожалению, мы не знаем механизма, согласно которому предпочтение отдается именно нашей Вселенной (если таковой вообще существует).
Концепция декогерентности разделяет традиционный взгляд о том, что измерение заставляет волновую функцию коллапсировать, отраженный в копенгагенской интерпретации. Измерение – это событие, вызывающее резкую декогеренцию, приближение, в котором декогеренция представляется в идеальном виде как мгновенное точное действие. Существуют и другие виды «измерений», которые не так резки, но тоже влияют на эволюцию волновой функции. Физик Джон Хартл писал: «Вероятности можно присвоить различным положениям Луны в небе или колебаниям плотности материи после Большого взрыва… вне зависимости от того, участвуют ли эти события в ситуации измерения и существует ли наблюдатель, регистрирующий их значения».[163]
Иными словами, условия ранней Вселенной определяют разветвления ее будущей истории, включая появление людей как неизбежный результат взаимодействия между такими условиями и непоследовательностью, присущей квантовой физике. Согласно этой концепции, участники не влияют на прошлую историю Вселенной.Декогерентный подход четко демонстрирует искусственность разделения между классическим наблюдателем или детектором и квантовой системой. Он показывает, что классический мир, который мы воспринимаем своими органами чувств, представляет собой следствие из свойств материи, результат взаимодействия многокомпонентных квантовых систем друг с другом и с окружающей средой. Чем больше система, тем больше волновых функций требуется для описания всех ее элементов и тем сложнее привести их в когерентные состояния, отображающие квантовую суперпозицию. Системы в квантовой суперпозиции очень хрупки и коллапсируют даже под самым минимальным внешним влиянием, будь то фотон солнечного света, космический луч или колебание гравитационного поля от проезжающего мимо грузовика. Декогеренция позволяет понять, как классический мир возникает из квантового, существующего за пределами нашего восприятия, хотя и не объясняет, где именно находится граница между классической и квантовой физикой. Джон Белл писал об этом так:
Проблема [квантовой механики] формулируется следующим образом: как именно разделить мир на аппаратную часть… которую мы можем обсуждать… и не подлежащую обсуждению квантовую систему? Сколько электронов, атомов или молекул составляют «аппарат»? Математика обычной теории требует такого разделения, но не объясняет, как оно происходит.[164]