Если свет (как уже упоминалось ранее, этим словом я обозначаю все виды электромагнитного излучения) – это волна, то в чем он распространяется? Другие, более привычные нам волны представляют собой колебания среды: волны могут возникать на поверхности воды, звуковые волны – это изменения давления воздуха, а если взять веревку за один конец и хорошенько встряхнуть, по ней тоже пойдут волнообразные движения. Так в чем же появляются волны света? Это одна из множества связанных с ним загадок. Сегодня мы знаем, что свету не нужна материальная среда для распространения. Он может двигаться в вакууме, и для этого ему нужно всего лишь содействие электрических и магнитных полей. Разумеется, свет может проходить и через материальную среду. Каждый из нас хотя бы раз открывал глаза под водой или смотрел через стекло. В результате движения в среде свет теряет часть своей скорости, так как световые волны заставляют электрические заряды, из которых состоит материальная среда, колебаться вместе с ними.
Для физика XIX века было очевидно, что свет отличается от других волн, так как для движения ему не требуется обычная среда. Тем не менее, по мнению Максвелла,
Борьба между приверженцами корпускулярной и волновой теории продолжалась до начала XIX века, когда Томас Юнг и Огюстен Жан Френель независимо пришли к концепции света как поперечной волны. В частности, Юнг провел серию экспериментов, включающих в себя дифракцию, и убедительно доказал, что свет является волной. Янг прорезал в листе бумаги прямоугольное отверстие, поместил в него человеческий волос, а затем подсветил его свечой. В своих заметках от 1802 года он пишет: «Когда волос приблизился к краю свечи достаточно близко, чтобы на него падало достаточно света, начали появляться [чередующиеся черные и белые] полосы и легко было заметить, что их ширина была пропорциональна видимой ширине волоса, от которого они отходили».[111]
К тому моменту, как Максвелл доказал, что свет представляет собой поперечную электромагнитную волну, корпускулярная теория Ньютона была забыта. Эксперименты показывали, что свет при столкновении с препятствием ведет себя так же, как волны воды, и демонстрирует те же интерференционные узоры.Однако чем больше внимания уделялось природе света, тем более странным казалось понятие эфира. Как и флогистон и теплород, он казался скорее не физическим, а магическим явлением. Чтобы заполнять собой все пространство, люминофорный эфир должен был быть жидкостью, подобной эфиру Аристотеля. Но при этом он одновременно должен был быть крепче стали (чтобы обеспечивать движение коротких волн) и прозрачнее стекла (иначе мы не могли бы видеть свет далеких звезд). Кроме того, у него не должно было быть ни массы, ни вязкости и он не должен был бы мешать орбитальному движению планет. Тот факт, что большая часть самых светлых научных умов того времени приняла подобную странную концепцию с полной уверенностью, показывает, как сложно отказаться от предубеждений, рожденных опытом. Волна должна была в чем-то распространяться. Ученому XIX века было гораздо проще поверить в эфир, чем предположить, что свет может двигаться в вакууме. Космос снова казался людям наполненным какой-то размытой субстанцией, недоступной для восприятия.
Для того чтобы эфир можно было признать полноправным физическим явлением, его следовало прямо или косвенно обнаружить. Учитывая его сверхъестественные свойства, первый вариант исключался, ведь для того, чтобы что-то можно было обнаружить, это что-то должно взаимодействовать с приборами. А какой детектор сможет засечь нечто неосязаемое и не имеющее вязкости? Итак, требовались косвенные доказательства, и найти их было не так-то просто.