Читаем Осциллограф - ваш помощник (приставки к осциллографу) полностью

На диодах VDl — VD5 собран выпрямитель для питания базовой цепи исследуемого транзистора и микросхемы DD1. Напряжение на микросхему подается с параметрического стабилизатора, выполненного на резисторе R1 и стабилитроне VD7 и подключенного к выпрямителю. Еще один параметрический стабилизатор, выполненный на резисторе R2 и стабилитроне VD6, применен для получения напряжения, питающего базовую цепь проверяемого транзистора, иначе говоря, напряжения, определяющего токи через резисторы R11—R13. Чтобы эти токи можно было изменять в зависимости от коэффициента передачи исследуемого транзистора, в стабилизатор введен регулирующий транзистор VT1, на базу которого напряжение с параметрического стабилизатора поступает через переменный резистор R3. При изменении положения движка этого резистора изменяется напряжение на резисторе нагрузки R5, а значит, изменяются «порции» тока в базовой цепи исследуемого транзистора при открывании ключей на транзисторах VT3—VT5. Для ограничения тока в базовых цепях транзисторов ключей установлены резисторы R8—R10.

На диодах VD8—VD11 собран еще один выпрямитель, но без конденсатора фильтра на выходе. Поэтому с него снимается пульсирующее напряжение частотой 100 Гц, используемое для питания цепи коллектор — эмиттер исследуемого транзистора. Напряжение с резистора R14, пропорциональное току коллектора транзистора структуры р-n-р или току эмиттера транзистора структуры n-p-n, подастся на вертикальный (Вход осциллографа. Поскольку в схеме включения транзистора ОЭ (общий эмиттер) ток коллектора незначительно отличается от тока эмиттера, оказалось возможным включить резистор R14 в цепь эмиттера исследуемого транзистора структуры n-p-n. При таком построении измерительной цепи смещение луча осциллографа от нулевого положения происходит вправо и вверх, т. е. характеристики получаются удобными для наблюдения.

Направление тока в цепи базы в зависимости от структуры исследуемого транзистора изменяют переключателем SA1.

Переменные напряжения на выпрямители можно подавать только с разных обмоток трансформатора… Причем обмотка, с которой снимается напряжение на диоды VD1—VD4, должна иметь возможно малую емкостную связь с сетевой обмоткой, иначе могут появиться наводки на изображении с частотой сети. Наиболее просто уменьшить эту связь применением П-образного магнитопровода для трансформатора и размещением обмоток на разных сердечниках магнитопровода. Помехи более высоких частот, способные проникнуть из сети, фильтруются конденсатором С2.

Большая часть указанных на схеме деталей может быть смонтирована на печатной плате (рис. 22) из стеклотекстолита толщиной 1,5 мм.




Поскольку оксидный конденсатор С1 использован сравнительно большой емкости, его допустимо составить из нескольких конденсаторов меньшей емкости (например, 1000 мкФ) соединенных параллельно. Для этого на плате предусмотрено место и дополнительные отверстия под конденсаторы К50-6.

Если предполагается проверять только транзисторы структуры n-р-n, можно собрать более простую приставку-характериограф по схеме, приведенной на рис. 23. В этом случае к трансформатору, с которого снимается переменное напряжение 10 В, каких-либо особых требований не предъявляется.



«Весовые» резисторы (R11—R13 на рис. 21 и R4—R6 на рис. 23) выбирают в зависимости от требуемых токов базы. Для исследования транзисторов малой мощности «выбран «вес», равный 20 кОм. При исследовании более мощных транзисторов он может быть иным. Но в любом варианте соотношение сопротивлений резисторов R13, R12 и R11 (R6, R5 и R4 для рис. 23) должно оставаться равным 1:2:4.

Электронный коммутатор

Можно ли на экране осциллографа наблюдать одновременно два сигнала, скажем, подаваемый на вход усилителя звуковой частоты и поступающий на динамическую головку? Нетрудно догадаться, что осуществить подобное на одном луче невозможно. Но ведь такое бывает необходимо в практике радиолюбителя!

Вывод напрашивается сам: нужно превратить наш однолучевой осциллограф в двухлучевой — тогда на каждом луче можно наблюдать свой сигнал. Устройства, позволяющие осуществить подобное желание, называют электронным коммутатором. С некоторыми вариантами электронного коммутатора мы и познакомимся. Итак, электронный коммутатор. Он подключается к входному щупу осциллографа, а исследуемые сигналы поступают на входы (их два) коммутатора. С помощью электроники коммутатора сигналы с каждого входа поочередно подаются на осциллограф. Но линия развертки осциллографа для каждого сигнала смещается: для одного сигнала, скажем, первого канала, — вверх; для другого (второго канала) — вниз. Иначе говоря, коммутатор «рисует» на экране две линии развертки, на каждой из которых виден свой сигнал. В итоге появляется возможность визуально сравнивать сигналы по форме и амплитуде, что позволяет проводить самые разнообразные испытания аппаратуры, выявлять каскады, вносящие искажения.

Перейти на страницу:

Все книги серии Приложение к журналу «Радио»

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника