Повернув ротор конденсатора переменной емкости в положение максимальной емкости, «растяните» изображение настолько, чтобы можно было наблюдать колебание, вдвое меньшее по амплитуде в сравнении с первоначальным (рис. 57,
Подсчитайте число периодов до этого колебания и определите добротность контура на данной частоте по формуле
Q
= N/0,22,где
В показанном на рис. 57, в примере добротность составит 45.
Перестроив контур конденсатором переменной емкости на наиболее коротковолновый участок (соответствует минимальной емкости конденсатора), вновь определите добротность. Результат получится более высокий по сравнению с предыдущим из-за некоторого уменьшения потерь в конденсаторе и увеличении индуктивного сопротивления катушки.
Дальнейшее повышение добротности наблюдается при уменьшении емкости конденсаторов связи С1 и С2, но одновременно уменьшается и размах наблюдаемых на экране колебаний.
Может случиться, что добротность контура будет весьма высокой и подсчитать число периодов до нужного колебания не удастся — настолько плотно «выстроятся» колебания. В этом случае поступают так, как показано на рис. 57,
Определив добротность, можете измерить частоту резонансных колебаний известным вам способом (по длительности периода одного колебания) и подсчитать полосу пропускания контура по формуле
Δf
= f0/Q,где
Освоив предложенную методику, вы сможете провести немало интересных экспериментов, например, по изучению влияния на добротность числа витков катушки связи магнитной антенны и входного сопротивления первого каскада усилителя РЧ. Наблюдения за добротностью помогут подобрать наиболее оптимальный режим работы «высокоомного» усилителя РЧ при непосредственном подключении к нему колебательного контура магнитной антенны. Не менее полезными окажутся измерения добротности при самостоятельной разработке магнитной антенны для данного перекрытия диапазона волн — ведь на добротности сказывается и магнитная проницаемость ферритового сердечника, и число витков катушки, и диаметр провода.
Еще раз подчеркнем, что описанная методика измерений пригодна не только для магнитной антенны, а практически для любого колебательного контура.
И еще об одном варианте «индуктивных» измерений. Как известно, любая динамическая головка обладает своей резонансной частотой, которую необходимо знать при изготовлении громкоговорителя или акустической системы. Чтобы избежать ошибки, а также проконтролировать результат согласования динамической головки с акустическим объемом корпуса громкоговорителя, нужно предварительно более точно определить резонансную частоту головки. Здесь также поможет осциллограф, но в паре с генератором 3Ч, желательно с большой выходной мощностью (не менее 2 Вт). Соединяют их так, как показано на рис. 58,
Выходной сигнал генератора 3Ч поступает на цепочку из последовательно соединенных резистора R1 и динамической головки ВА1. Параллельно головке подключены входные щупы осциллографа, а «земляное» гнездо (или зажим) генератора соединено с гнездом «ВХОД X
» осциллографа. Такое подключение осциллографа позволяет наблюдать фазовый сдвиг между током и напряжением в цепи звуковой катушки головки и фиксировать момент резонанса.Сопротивление резистора R1 должно быть в 20…30 раз больше сопротивления звуковой катушки, чтобы амплитуда тока в цепи катушки оставалась постоянной — тогда наряду с фазой и частотой резонанса удастся определять амплитуду напряжения на катушке.
Последовательность работы напоминает вышеописанную процедуру измерения индуктивности катушек. Осциллограф работает в автоматическом режиме с разверткой от внешнего сигнала. Выходной сигнал генератора и чувствительность осциллографа устанавливают такими, чтобы при частоте генератора 200…500 Гц на экране осциллографа был виден эллипс (рис. 58,
Затем перестраивают частоту генератора в сторону нижних частот до получения прямой линии (рис. 58,
Рис. 58
О чем поведал прямоугольный импульс
Разве может о чем-то поведать импульс? — скажете вы. Импульс он и есть импульс, разве только прямоугольной формы. Но в том-то и дело, что если использовать прямоугольный импульс в качестве контрольного сигнала и подавать его, например, на вход усилителя 3Ч, то по форме выходного сигнала можно сразу же оценить работу усилителя и назвать его недостатки — малую полосу пропускания, недостаточное усиление на низших или высших частотах, самовозбуждение в какой-то области частот.