Читаем От атомов к древу. Введение в современную науку о жизни полностью

Как альфа-аминокислоты объединяются в белок? Очень просто: карбоксильная группа одной аминокислоты связывается с аминогруппой другой (см. рис. 3.2А). От карбоксильной группы отщепляется гидроксил (–OH), а от аминогруппы — водород (–H). Эти отщепленные фрагменты тут же соединяются и дают воду (H–O–H), а остатки карбоксильной группы и аминогруппы замыкаются по освободившимся валентностям друг на друга, образуя новую группу –CO–NH–. Вот через нее-то две аминокислоты и соединяются между собой.

Группа –CO–NH– называется пептидной группой, а связь между углеродом и азотом в ней — пептидной связью. Цепочка аминокислот, соединенных пептидными связями, называется пептидом

(см. рис. 3.2Б). Это более широкое понятие, чем белок. Все белки — пептиды, но не все пептиды — белки.

Реакция образования пептида в принципе обратима: он может как синтезироваться, так и распадаться обратно на отдельные аминокислоты. На одном конце пептида находится свободная аминогруппа, на другом — свободная карбоксильная группа. Для краткости конец пептида со свободной аминогруппой принято называть N-концом, а конец со свободной карбоксильной группой — C-концом.

Короткие пептиды называют или по числу аминокислотных остатков (два остатка — дипептид, три — трипептид, четыре — тетрапептид...), или собирательно — олигопептидами. Длинные пептиды с многими десятками аминокислотных остатков называют полипептидами

. Все белки — полипептиды. Аминокислотных остатков в них обычно даже не десятки, а сотни. “Средний” белок, типичный для живой природы, включает примерно 300–350 аминокислот. Белок из 200 аминокислот считается небольшим. Неудивительно, что белковые молекулы поразили когда-то химиков своими размерами.

Разнообразие и единство

В состав белков входит 20 стандартных аминокислот, одних и тех же у всех живых организмов. Как мы уже знаем, все они — альфа-аминокислоты, а это значит, что их общую формулу можно записать вот как: R–CH(NH2)–COOH. Буква R тут, как всегда, обозначает радикал, то есть изменяемую часть молекулы.

Аминокислоты, образующие белки, называют протеиногенными

, от уже знакомого нам слова “протеин”. Две самые простые протеиногенные аминокислоты — глицин (где радикал — атом водорода) и аланин (где радикалом служит метильная группа –CH3). У других аминокислот радикалы сложнее. Для читателей-эрудитов добавим, что все нестандартные аминокислоты (селеноцистеин, пирролизин, гидроксилизин, гидроксипролин) так или иначе являются производными стандартных и нас пока не интересуют. А стандартных — ровно 20.

Свойства любого пептида зависят не только от того, какие аминокислоты в него входят, но и от того, в каком порядке они там расположены. Например, представим себе дипептид, состоящий из глицина и аланина. Как он будет выглядеть? Если в создании пептидной связи примут участие карбоксильная группа глицина и аминогруппа аланина, дипептид будет таким: NH2–CH2–CO–NH–CH(CH3

)–COOH. Но возможен и другой случай, когда пептидную связь образуют, наоборот, карбоксильная группа аланина и аминогруппа глицина. Тогда пептид получится вот таким: NH2–CH(CH3)–CO–NH–CH2–COOH. Как видим, это два разных соединения. В белках, состоящих из сотен аминокислот, порядок расположения этих аминокислот не менее важен — только вот возможных вариантов там намного больше.

Глядя на формулы, легко убедиться, что два наших дипептида — не что иное, как изомеры (см. главу 1). То же относится к любым пептидам, отличающимся друг от друга порядком расположения одних и тех же аминокислотных остатков. И число таких изомеров в случае с длинными пептидами может быть огромным. Например, можно вычислить, что для декапептида, состоящего из 10 разных аминокислот, число возможных изомеров равно 3 628 800. А ведь декапептид — это даже не белок. Для любого крупного белка число изомеров будет в буквальном смысле астрономическим. Вот почему разных белков так много.

Перейти на страницу:

Похожие книги