Читаем От чёрных облаков к чёрным дырам полностью

Понятно, что наибольшую базу на Земле можно получить, производя измерения на концах её диаметра. Эти точки отстоят друг от друга примерно на 12 800 км. Как ни велико это расстояние, все же оно недостаточно для того, чтобы аккуратно определить расстояние до Солнца. Но такую базу можно использовать для определения расстояния до Марса, когда он находится ближе всего к Земле. Такое случается, когда Солнце (С), Земля (3) и Марс (М) находятся на одной прямой с Землёй, посередине. Это расположение показано на рис. 22. В такой ситуации можно с помощью триангуляции измерить расстояние ЗМ.

Рис. 22. Диаграмма, иллюстрирующая метод измерения расстояний от Солнца (С) до Земли (3) и Марса (М)

Но как же измерить расстояние от Земли до Солнца (СЗ)? Для этого можно воспользоваться законами Кеплера движения планет. Третий закон Кеплера утверждает, что квадрат периода обращения планеты вокруг Солнца меняется пропорционально кубу расстояния планеты до Солнца. Марсианский период обращения равен 687 дней, а период обращения Земли — 365¼ дней. Поэтому из закона Кеплера получаем соотношение

(CM/СЗ)³ = (687/365¼)² .

Решая это уравнение, находим, что приблизительно СМ=(3/2) СЗ. Отсюда ЗМ=СЗ/2, и мы можем узнать СЗ, если перед этим узнали значение ЗМ.

Конечно, метод измерений описан нами несколько упрощённо. На самом деле планеты движутся по эллиптическим орбитам вокруг Солнца и математически задача определения СЗ более сложна, чем для круговых орбит на рис. 22. Однако наш пример правильно передаёт сам принцип измерения расстояния.

Благодаря современной технологии сейчас имеются лучшие способы измерения, чем старый метод триангуляции с использованием Марса. Посылая сигналы радиолокатора на планету Венера (В) в тот момент, когда она находится между Землёй и Солнцем, можно измерить непосредственно её расстояние до Земли. Действительно, сигнал радиолокатора — это одна из форм микроволнового излучения, которое (как было объяснено в гл. 2) распространяется со скоростью света. Следовательно, если сигнал, отправленный на Венеру, и его эхо, принятое на Земле, разделяет промежуток времени 300 с, можно заключить, что путь в один конец, равный расстоянию ЗВ, составит половину всего пути, пройденного светом за указанный промежуток времени.

Первый подобный радиолокационный эксперимент был выполнен в 1958 г. в лабораториях Линкольна Массачусетского технологического института. С тех пор опыт неоднократно повторялся со все большей точностью во многих лабораториях мира. Сейчас известно, что расстояние от Земли до Солнца равно 149597870,7 км с погрешностью примерно 100 м. Это расстояние называется астрономической единицей (АЕ).

ОПРЕДЕЛЕНИЕ РАССТОЯНИЯ ДО ЗВЕЗД С ПОМОЩЬЮ ТРИАНГУЛЯЦИИ

Определив расстояние между Землёй и Солнцем, можно теперь использовать орбиту Земли как базу триангуляции звёзд. Метод показан на рис. 23, причём для упрощения опять орбита Земли считается круговой.

Рис. 23. Упрощённая схема, иллюстрирующая понятое параллакса звезды. Считается, что орбита Земли круговая, Е1Е2 — её диаметр, причём Е1Σ = Е2Σ. Отрезок Е3Е4 — любой другой диаметр орбиты Земли. Точки S1, S2, S3, S4 — проекции звезды на небесную сферу, если смотреть на звезду из точек E1, E2, E3, E4 соответственно. Указанные точки проекций лежат на эллипсе с главной осью S1S2. Параллакс равен половине угла E1ΣE2, т.е. половине максимального изменения направления на видимое положение звезды за время полного оборота Земли

Два положения Земли на орбите, разделённые промежутком времени в 6 месяцев, обозначены Е1 и Е2. Следовательно, E1E2 — диаметр орбиты, приблизительно равный 300 млн. км. Пусть Σ — звезда, расстояние до которой мы хотим измерить. Если допустить, что звезда не слишком далека от нас, то можно измерить с разумной точностью углы ΣE1E2 и ΣE2E1. Как уже пояснялось на рис. 21, треугольник очень узок, и поэтому определение расстояний ΣE1 и ΣE2 может содержать большие погрешности, если углы измерены недостаточно аккуратно.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука