Так как свет является самым быстрым (а часто и единственным) переносчиком информации от астрономического тела, ясно, что внешний наблюдатель будет лишён всякой информации об объекте, как только тело сожмётся внутрь сферы критического радиуса
(4)
Для объекта, в 10 раз более массивного, чем Солнце, этот радиус равен примерно 30 км. Мы теперь понимаем, что имел в виду Эддингтон, когда говорил, что гравитация станет «достаточно сильной, чтобы удержать излучение», и почему мы не можем засвидетельствовать сжатие Солнца в точку в нашем мысленном эксперименте.
Эддингтон был не прав, однако, в отношении мирного будущего неудержимо сжимающейся звезды, так как заключительные события далеки от мирных я спокойных. Чтобы понять эти последние мгновения жизни звезды, нужно отойти от ньютоновской теории тяготения и обратиться к общей теории относительности Эйнштейна. ЧЕРНЫЕ ДЫРЫ С ТОЧКИ ЗРЕНИЯ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
Мы бы ушли слишком далеко от нашей главной темы о судьбе звёзд, если бы начали подробно обсуждать, что такое общая теория относительности. Отметим только те её аспекты, которые имеют отношение к обсуждаемой проблеме1231.
1231 Подробный общедоступный рассказ об этом
содержится в книге автора «Гравитация без формул». Пер. с
англ. М.: Мир, 1985.—
Общая теория относительности
рассматривает тяготение как проявление геометрии пространства. Под
геометрией мы, конечно, подразумеваем предмет, имеющий дело с
измерениями длин и углов различных фигур в пространстве. Та
геометрия, которую мы изучаем в школе, связана с именем греческого
математика Евклида, жившего 23 столетия тому назад. Книга Евклида
начинается с набора предположений (называемых постулатами или
аксиомами) и затем развивает всю структуру геометрии с помощью ряда
теорем,
Долгое время математики считали, что евклидова геометрия единственна в том смысле, что не может быть другой геометрии, основанной на других аксиомах. В прошлом веке было осознано, что это утверждение ошибочно, и ряд выдающихся математиков — Лобачевский, Больяи, Гаусс и Риман — привели примеры новых геометрий, которые как логические построения были равноправны с евклидовой. Но то, какая геометрия на самом деле применима при измерениях в нашем пространстве и времени, зависит не только от чисто математических соображений. Лишь физик, произведя реальные измерения, может установить, какая геометрия осуществляется в природе — евклидова или другая.
Эйнштейн в 1915 г. впервые
предложил теорию, в которой геометрия пространства — времени,
содержащего сгустки вещества и энергии, была
Рис. 66. Пространственно-временная диаграмма показывает, где находятся наблюдатели А и В в разные моменты времени. По горизонтали указано расстояние от центра коллапсирующего объекта, а по вертикали — промежутки времени. Заштрихованная область представляет собой сжимающуюся поверхность коллапсирующего тела, на которой находится наблюдатель В. Точки В1 и В2... указывают равные интервалы времени по часам В. Световые сигналы, показанные стрелками, достигают наблюдателя А в точках А1, А2... со все увеличивающимся разрывом во времени. Сигнал, посланный в точке В8, никогда не дойдёт до А. Сигналы в точках В9, В10... направлены внутрь; они не могут пересечь барьера Шварцшильда. Вскоре после точки В10 мир для В приходит к концу
Так как теория Эйнштейна
затрагивает не только пространство, но и