Читаем От чёрных облаков к чёрным дырам полностью

Добавим теперь к этой картине световую волну в качестве поставщика энергии. В рассматриваемом примере на рис. 8 для того, чтобы перебросить электрон с энергетического уровня Е1 до уровня Е2 нужно, чтобы свет принёс энергию Е2 - Е1. Согласно квантовой теории света такой процесс переброса может обеспечить только фотон определённой частоты. Указанное ранее правило определяет эту частоту:

ν=(Е2 - Е1)/h

Итак, мы приходим к картине того, как излучение, состоящее из фотонов, избирательно поглощается при дискретных значениях частот в результате взаимодействия с атомами. Если фотоны имеют нужную частоту, они перебрасывают атомные электроны наверх по энергетической лестнице. Следовательно, фотон, поглощённый в таком процессе, уменьшает интенсивность излучения на данной конкретной частоте. Отсюда, тёмные линии в солнечном спектре обязаны своим происхождением поглощению излучения атомами, находящимися главным образом в атмосфере Солнца.

Например, оказывается, что линия, обнаруженная при длине волны 6563 Å и обозначенная Фраунгофером как линия С, возникает, когда электрон в атоме водорода переходит со второго на третий энергетический уровень. На основе квантовой теории были выполнены теоретические расчёты возможных уровней энергии в разных атомах, и теоретики имеют в своём распоряжении списки длин волн спектральных линий, связанных с переходами в таких атомах. Опытный астроном может, таким образом, идентифицировать тёмную линию данной длины волны в спектре звезды с ответственным за поглощение атомом. Таким образом, было установлено, что первоначальные фраунгоферовы линии обязаны поглощению атомами водорода, натрия и кальция в атмосфере Солнца.

Яркие линии испускания возникают в результате обратного процесса. Когда электрон перепрыгивает вниз с уровня энергии Е2 на уровень энергии Е1 он испускает фотон частоты ν = (Е2 - Е1)/h. Этот скачок вниз (в противоположность скачку вверх) может происходить спонтанно, в отсутствие излучения. Если же излучение «правильной» частоты присутствует, оно также способствует процессу перескока на нижний уровень. Испускание (или поглощение), сопровождаемое подходящим излучением, называется вынужденным испусканием (или поглощением). Скачок вниз в отсутствие внешнего излучения называется спонтанным

Мы приходим, таким образом, к важному выводу, что если определённый атом, действующий как поглотитель, обусловливает появление тёмных линий определённой частоты в спектре, то этот же атом, действуя как излучатель, будет давать яркие линии испускания той же частоты.

Как мы увидим далее, электроны в атомах, находящихся на горячей внешней поверхности звезды, приобретают большие энергии. Эти электроны затем перепрыгивают вниз по энергетической лестнице, приводя к появлению линий испускания в спектре звезды. Если нам удаётся идентифицировать эти линии, мы определяем, какие атомы находятся на внешней поверхности звезды.

Перейдём теперь от обсуждения ярких и тёмных линий в спектре к анализу непрерывного распределения света по волнам всех частот. В частности, рассмотрим распределение, которое имеет особое значение в фундаментальной физике и, как оказывается, существенно определяет тип спектра, получаемого от звезды.

ИЗЛУЧЕНИЕ ЧЕРНОГО ТЕЛА

Вообразите внутренность нагреваемой полости. Первоначально отдельные части полости будут горячее других частей. Эти более нагретые части испускают тепло в направлении более холодных частей, температура которых начинает при этом повышаться. Такой процесс продолжается до тех пор, пока все точки внутри полости не станут одинаково «горячими», т. е. будет отсутствовать поток тепла от одной точки к другой. В идеальной полости (стенки которой не пропускают тепло в. окружающее пространство) быстро достигается описанная равновесная ситуация.

Но «тепло» внутри такой полости есть не что иное, как электромагнитные волны, мечущиеся между стенками. В полости, нагретой, скажем, до 250 °С, волны принадлежат в основном микроволновой области. Если нагреть полость до 5000 °С, то волны окажутся в основном в видимой области.

Приведём другой пример. Допустим, мы нагреваем железный стержень. Сначала он доходит до «красного каления», т. е. его цвет приобретает красноватый оттенок. Если нагревать дальше, цвет меняется: кусок железа, доведённого до «белого каления», горячее куска железа, достигшего «красного каления». Если сравнить примеры с полостью и куском железа с данными табл. 1 и 2, можно заметить, что доминирующая длина волны излучения, испускаемого нагретым телом, связана с его температурой.

Наша идеализированная полость является «чёрным телом». Поскольку излучение через стенки не уходит наружу, тело «черно» для внешнего наблюдателя! Однако внутри оно нагрето, причём внутренняя поверхность достигла состояния равновесия, при котором поглощается столько же энергии в каждой точке, сколько испускается. Для вычисления того, сколько энергии переносится волнами разных частот, Макс Планк и ввёл квантовые представления.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука