Добавим теперь к этой картине
световую волну в качестве поставщика энергии. В рассматриваемом
примере на рис. 8 для того, чтобы перебросить электрон с
энергетического уровня
ν=(
Итак, мы приходим к картине
того, как излучение, состоящее из фотонов, избирательно поглощается
при дискретных значениях частот в результате взаимодействия с
атомами. Если фотоны имеют нужную частоту, они перебрасывают атомные
электроны наверх по энергетической лестнице. Следовательно, фотон,
поглощённый в таком процессе, уменьшает интенсивность излучения на
Например, оказывается, что
линия, обнаруженная при длине волны 6563 Å и обозначенная
Фраунгофером как линия
Яркие линии испускания
возникают в результате обратного процесса. Когда электрон
перепрыгивает
Мы приходим, таким образом, к важному выводу, что если определённый атом, действующий как поглотитель, обусловливает появление тёмных линий определённой частоты в спектре, то этот же атом, действуя как излучатель, будет давать яркие линии испускания той же частоты.
Как мы увидим далее, электроны в атомах, находящихся на горячей внешней поверхности звезды, приобретают большие энергии. Эти электроны затем перепрыгивают вниз по энергетической лестнице, приводя к появлению линий испускания в спектре звезды. Если нам удаётся идентифицировать эти линии, мы определяем, какие атомы находятся на внешней поверхности звезды.
Перейдём теперь от обсуждения ярких и тёмных линий в спектре к анализу непрерывного распределения света по волнам всех частот. В частности, рассмотрим распределение, которое имеет особое значение в фундаментальной физике и, как оказывается, существенно определяет тип спектра, получаемого от звезды.
ИЗЛУЧЕНИЕ ЧЕРНОГО ТЕЛА
Вообразите внутренность нагреваемой полости. Первоначально отдельные части полости будут горячее других частей. Эти более нагретые части испускают тепло в направлении более холодных частей, температура которых начинает при этом повышаться. Такой процесс продолжается до тех пор, пока все точки внутри полости не станут одинаково «горячими», т. е. будет отсутствовать поток тепла от одной точки к другой. В идеальной полости (стенки которой не пропускают тепло в. окружающее пространство) быстро достигается описанная равновесная ситуация.
Но «тепло» внутри такой полости есть не что иное, как электромагнитные волны, мечущиеся между стенками. В полости, нагретой, скажем, до 250 °С, волны принадлежат в основном микроволновой области. Если нагреть полость до 5000 °С, то волны окажутся в основном в видимой области.
Приведём другой пример. Допустим, мы нагреваем железный стержень. Сначала он доходит до «красного каления», т. е. его цвет приобретает красноватый оттенок. Если нагревать дальше, цвет меняется: кусок железа, доведённого до «белого каления», горячее куска железа, достигшего «красного каления». Если сравнить примеры с полостью и куском железа с данными табл. 1 и 2, можно заметить, что доминирующая длина волны излучения, испускаемого нагретым телом, связана с его температурой.
Наша идеализированная полость является «чёрным телом». Поскольку излучение через стенки не уходит наружу, тело «черно» для внешнего наблюдателя! Однако внутри оно нагрето, причём внутренняя поверхность достигла состояния равновесия, при котором поглощается столько же энергии в каждой точке, сколько испускается. Для вычисления того, сколько энергии переносится волнами разных частот, Макс Планк и ввёл квантовые представления.