Однако 20 лет назад астрономы заподозрили, а сегодня уже практически уверены, что на больших расстояниях между галактиками проявляется новая, неведомая ранее сила, которую условно можно назвать антигравитационной. Она расталкивает далекие объекты тем сильнее, чем они дальше друг от друга, ускоряя расширение Вселенной. Носителя этой силы пока называют темной энергией, но на самом деле ни свойства, ни истинная причина антигравитации пока не изучены. Но раз в природе существует сила «всемирного отталкивания», то не исключено, что и Большой взрыв произошел благодаря этой или подобной ей силе. Когда астрономы и физики детально изучат свойства темной энергии, у них появится возможность более уверенно судить о том, что было до Большого взрыва.
№ 99. Что такое черная дыра?
Так называют очень компактные и чрезвычайно массивные космические тела, обладающие настолько мощной гравитацией, что они не отпускают от себя ни вещество, ни излучение (например, свет) и поэтому со стороны кажутся абсолютно темными.
Что значит «не отпускают»? Каждое тело – и звезда, и планета, и слон, и человек – притягивает к себе все окружающие тела. Это и называется гравитацией. Чем больше в теле вещества и чем ближе мы к нему, тем сильнее гравитационное притяжение. В теле человека и даже слона мало вещества, поэтому их притяжение мы практически не ощущаем (хотя очень чувствительные приборы его без труда замечают). Планета Земля намного массивнее любого слона, поэтому мы постоянно чувствуем ее притяжение – это наш вес. Подбросьте мяч, и он упадет вниз: это его притягивает Земля. Чтобы ракета умчалась от Земли к другим планетам, ее нужно разогнать до скорости 11 км/с, иначе она не улетит.
Но Земля – небольшая планета; звезды намного больше и массивнее ее. Если бы мы жили на поверхности Солнца (правда, там очень горячо, но если бы), то улететь оттуда на ракете смогли бы только на скорости не менее 620 км/с. А пройдет несколько миллиардов лет, и наше Солнце состарится и сожмется в небольшой плотный объект – белый карлик. Вещества в нем останется почти столько же, сколько его в современном Солнце, а размер уменьшится раз в 100 (и станет таким, как у Земли). При этом притяжение будет намного сильнее, ведь на поверхности белого карлика все находится гораздо ближе к его веществу, чем на поверхности Солнца. Если бы мы оказались на белом карлике, то улететь оттуда на ракете можно было бы только со скоростью более 6000 км/с.
Некоторые звезды в конце жизни сжимаются еще сильнее, до размера всего нескольких десятков километров. Такие сверхплотные объекты называют нейтронными звездами. Стартовая скорость на их поверхности превосходит 100 тысяч км/с. Ни одна ракета с такой скоростью не летает, однако частицы света, фотоны, движутся со скоростью 300 тысяч км/с и легко покидают поверхность белого карлика и даже нейтронной звезды. Поэтому мы и видим эти космические тела в телескоп.
А вот если звезда сжимается всего до нескольких километров – и именно так происходит с наиболее массивными звездами, – получается та самая черная дыра. На ее поверхности стартовая скорость превышает 300 тысяч км/с, поэтому даже свет не может от нее улететь. Заметить присутствие черных дыр можно лишь по тому, как сильно они притягивают к себе все окружающие тела.
Вблизи черных дыр многое становится непривычным для нас, например замедляется ход времени. Поэтому ученые так стремятся их изучить.
№ 100. Куда все девается в черной дыре?
Никуда не девается, а там и остается. Ведь черная дыра – это не мусоропровод, не туннель, не отверстие из одного места в другое, а просто очень массивный и компактный объект, который все к себе притягивает и ничего не отпускает. На самом деле свойства черных дыр пока изучены лишь теоретически. Создать черную дыру в лаборатории, чтобы изучить ее на практике, невозможно: пришлось бы сжать целую гору до размера много меньше атома. Поэтому астрономы ищут черные дыры в космосе, где они должны образовываться сами при сжатии массивных умирающих звезд. Несколько таких кандидатов в черные дыры уже обнаружено. Но чтобы надежно доказать, что это именно они, и тем более детально их изучить, возможностей современных телескопов недостаточно. Сейчас строятся более зоркие телескопы, которые помогут это сделать.