К началу шестидесятых годов прошлого столетия ученые, изучающие молекулы, замороженные до кристаллического состояния, добились выдающегося успеха. Английские кристаллографы и биофизики Макс Перутц и Джон Кендрью установили пространственное строение
С тех пор рентгеноструктурная кристаллография добилась колоссальных успехов: трехмерные структуры тысяч белковых молекул уже расшифрованы с помощью этого подхода. Однако против него всегда выдвигалось принципиальное возражение о том, что белок, замороженный в кристалле, может иметь иную пространственную структуру по сравнению с тем же белком в растворе — то есть в организме. Метод же, позволяющий построить конформацию белка вне кристалла по изменениям определенных параметров его атомов под воздействием сильного магнитного поля —
Казалось бы, рентгеноструктурный анализ может без особого труда восстанавливать пространственные структуры молекул пептидов, длина цепочек которых в десятки, а то и в сотни раз меньше, чем у белков. Но нет — выяснилось, что гораздо легче определить пространственное строение длиннейшей белковой молекулы, чем коротенького пептида.
Для понимания этого парадокса вновь обратимся к модели молекулы, состоящей из твердых шариков-атомов, насаженных на жесткие стержни — валентные связи. Атомы внутри молекулы способны взаимодействовать друг с другом — притягиваться и отталкиваться; в первом приближении можно считать, что все пары атомов, которые не связаны жесткими валентными связями, соединены слабыми пружинками. Эти взаимодействия заставляют отдельные части молекулы вращаться вокруг одинарных связей в поисках такого положения, когда межатомные внутримолекулярные пружинки в сумме уравновесят одна другую и конформация молекулы станет устойчивой. Подобные вращения зависят еще и от взаимодействия с соседними молекулами, например с молекулами растворителя.
С увеличением длины цепочки растет и число одинарных связей, то есть возможностей внутримолекулярного вращения; в принципе, чем больше молекула, тем большее количество конформаций для нее может быть доступно. Мерой устойчивости конформаций служит суммарная внутримолекулярная энергия (скажем, степень натяжения межатомных пружинок). Чем ниже уровень такой энергии для молекулы в данной конформации, тем больше вероятность того, что молекула будет существовать в этой конформации. Так вот, молекулы очень многих белков, обладая огромным количеством возможных внутримолекулярных вращений, тем не менее устроены так, что какой-то одной из конформаций — нативной — соответствует энергия гораздо более низкая, чем энергии всех других потенциально устойчивых пространственных структур той же молекулы.