Читаем Открытие без границ полностью

Между двумя последовательными целыми числами не существует никаких других целых чисел. Например, между 6 и 7 «не поместится» никакое другое натуральное число, которое должно быть больше 6 и меньше 7. Однако если мы добавим к множеству натуральных чисел дробные числа, это правило перестанет выполняться. Так, число

(6 + 7)/2 = 13/2

будет находиться между 6 и 7.

Аналогичным образом можно найти число, расположенное между любыми другими двумя числами. Если даны два числа А и В, то обязательно будет выполняться соотношение

A < (A + B)/2 < B

Однако для этого необходимо, чтобы последовательность чисел, с которой мы работаем, содержала дробные, или рациональные, числа.

Так как описанные выше действия можно повторять бесконечно, можно утверждать, что между двумя любыми рациональными числами всегда будет располагаться бесконечно много других рациональных чисел. Именно в этом и заключается свойство плотности, о котором мы говорим. Плотность делает бессмысленным понятие «следующего» числа. Говоря о множестве натуральных чисел, можно смело утверждать, что за числом 12 следует 13, однако на множестве рациональных чисел говорить о числе, следующем за N, не имеет смысла: если таким числом является М, то всегда существует число

(N + M)/2,

идущее перед М.

Плотность отражает понятие бесконечности с непривычной стороны. Приведем пример из геометрии. Когда мы представляем себе прямую, мы считаем, что она продолжается бесконечно с обоих концов. В нашем представлении эта прямая бесконечно велика. Аналогом дробных чисел из предыдущего примера будут точки на отрезке прямой: между двумя точками всегда находится третья, и число точек отрезка также бесконечно велико.


Дискретное и непрерывное


Толковый словарь русского языка дает слову «дискретный» такое определение: «прерывистый, дробный, состоящий из отдельных частей», что схоже с определением дискретной величины в математике: «величина, принимающая конечное число отдельных значений, например число деревьев в лесу, число солдат в армии и пр.».

Как вы увидите чуть позже, упоминание «отдельных частей» отсылает нас к высшим разделам математики, так как нужно очень четко определить значение слова «отдельный», что сделать не так просто, как может показаться.

Чтобы лучше разобраться во всех тонкостях бесконечности (как бесконечно больших, так и бесконечно малых величин), нужно четко понимать значение понятий «непрерывное» и «дискретное». Рассмотрим разницу между ними на простом примере. Представьте себе два одинаковых сосуда, в одном из которых находится вода, а в другом — небольшие пластиковые шарики. Перельем содержимое первого сосуда в кувшин. Мы увидим, как течет жидкость и как постепенно уровень воды в кувшине поднимается. Если мы будем пересыпать в кувшин шарики, все будет выглядеть и восприниматься совершенно иначе: мы будем видеть, как шарики по одному падают в кувшин. Разница между первым и вторым случаем будет заметна не только на глаз, но и на слух: в первом случае звук будет непрерывным, во втором мы сможем различить звук, издаваемый каждым шариком при падении в кувшин.

В первом случае мы имеем дело с непрерывным процессом, во втором случае — с дискретным.

Рассмотрим другой пример: с 9 утра до 9 вечера время течет непрерывно. Но если мы посмотрим на расписание поездов, которые отправляются с 9 утра до 9 вечера, то увидим дискретное множество значений. Если один поезд отправляется в 10 утра, а следующий — в 11, то между значениями 10 и И нет никаких других, то есть эти значения дискретны. Напротив, течение времени между 10 и 11 часами непрерывно, и время может равняться, например 10 часам 25 минутам и 0,34628761720041244474 секунды.

Можно подумать, что понятия дискретного и непрерывного достаточно просты и интуитивно понятны. Тем не менее на протяжении многих лет они были предметом жарких споров: с одной стороны, они вовсе не просты, а с другой — потому что, как вы увидите чуть позже, интуиция не всегда хороший советчик, так как один и тот же предмет может казаться нам дискретным или непрерывным в зависимости от масштаба наблюдений.

Споры о дискретном и непрерывном вращаются вокруг понятия бесконечности, поэтому неудивительно, что они протекают скорее в философской плоскости, подобно противостоянию между пифагорейской и элейской школами в Древней Греции, которое ярче всего проявилось в парадоксах Зенона.

Ключевой вопрос состоит в том, является наш мир дискретным или непрерывным. Ответ на него очень сильно зависит от наших ощущений и, как следствие, лежит в плоскости теории познания. Не предаваясь философским размышлениям и не углубляясь в психологию, в начале XX века физики и математики сделали свой выбор в пользу концепции дискретного мира: появилась квантовая механика и так называемая дискретная математика.


Как обмануть время


Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука