Читаем Открытие мира полностью

Как и фотоэлемент, энергетике будущего принадлежит термоэлемент — простой прибор из двух спаянных пластинок разных металлов. Достаточно нагреть место спая, чтобы получить электродвижущую силу. Слишком низок пока коэффициент полезного действия такого прибора — тысячными долями вольта измеряется в нем напряжение тока. Но можно надеяться, что в будущем применение новых материалов и более высокого нагрева с помощью солнечных лучей превратит сегодняшний измерительный прибор в преобразователь энергии.

Как видим, станция с термоэлементами и фотоэлементами была бы предельно проста — от тепла и света солнечных лучей прямо к электрическому току.

В последнее время появилась идея водородной ракеты иного типа — атомноводородной. В ней для получения тепла предлагают воспользоваться не электрическим током, а атомным реактором.

Но вернемся к Солнцу. Речь шла о солнечном свете. А можно ли использовать солнечное тепло?

Для этого надо тепло и холод заставить работать вместе. Тепло рождает пар, холод сгущает его в жидкость, снова и снова происходит круговорот: пар-жидкость-пар. Раз есть пар, легко получить ток — турбогенератор честно служит в энергетике более полувека. Итак, на ракете можно установить гелиотеплоэлектростанцию.

Пар — посредник между лучом Солнца и электрическим током. А нельзя ли обойтись без посредника? Оказывается, высокую температуру в межпланетном пространстве получить легко — стоит поставить собирающее зеркало. Тогда можно обойтись без пара и турбины и даже без тока, нужного для нагрева водорода, вместо него будет работать непосредственно солнечное тепло. Итак, ракета несет с собою нагреватель, заменяющий атомный реактор.

Наши поиски энергии в пустом мировом пространстве, как видим, увенчались успехом. Энергия есть, и овладение ею зависит лишь от времени, от успехов техники завтрашнего дня.


Ракета с веерами из фотоэлементов.


Так же обстоит дело и с применением для целей межпланетных сообщений атомной энергии, которая откроет со временем новые грандиозные перспективы в области получения космических скоростей и изучения вселенной.

АТОМ И ВСЕЛЕННАЯ

Ничтожно малый атом и бесконечно большая вселенная — что общего между ними? Это миры, в познании которых нет конца и края. И хотя наш вооруженный глаз все глубже проникает и во вселенную и в недра вещества, мы сейчас так же далеки от конца этого путешествия, как и в начале его.

К чему же, однако, путешествовать, если известно наперед, что никогда не достигнешь цели? Да и познаем ли мы мир вообще? Не обман ли чувств все, что доносят нам приборы? Слабый луч света, пришедший откуда-то издалека, — вот единственный источник наших знаний о бесконечно далеких небесных светилах. Не обманывает ли он нас? Мы не видим глазом даже молекул, лишь приборы говорят о мельчайших частичках — атомах и электронах. Как знать, насколько правдив их рассказ?

Так или примерно так рассуждают некоторые зарубежные ученые-идеалисты, отрицающие возможность познания мира.

Но жизнь блестяще опровергает тех, кто не верит в могущество разума. Истинность познания проверяется практикой. И часто то, что происходит невообразимо далеко от нас, вдруг оказывается частью нашей жизни.

Атом и вселенная — превосходный пример.

Наука, изучая атом, нашла пути для атаки атомного ядра. Открылась новая эпоха, открылась перспектива такого энергетического могущества человека, перед которой бледнеет самая смелая фантазия.

В наших лабораториях взрыв атома «доставил» космос на Землю — температуры в миллионы градусов, господствующие на звездах, получены человеком. Мы говорим теперь об освобождении атомной энергии, об атомных двигателях, кораблях, самолетах и электростанциях, которым не нужны бензин, уголь и нефть.

Атомная техника только еще рождается. В будущем атом обещает покорение вселенной.

Самое лучшее топливо, которое может представить химия, даст скорость истечения газов из ракетного двигателя примерно четыре тысячи метров в секунду. Вероятно, на практике, с учетом потерь, — а без них не бывает никакой машины, — получим еще меньшую скорость: около трех с половиной тысяч. Возможно, применение металлических топлив несколько увеличит эту цифру.

Даже лунный перелет, пока нет атомной ракеты, представляет большие трудности для техники межпланетных путешествий.

Что же остается сказать о далеких космических рейсах с высадкой на планеты? Неужели они навсегда останутся лишь мечтой?

Нет. Потому-то и хотят устроить склад горючего в мировом пространстве — внеземную станцию.

Потому-то мы и хотим поставить на ракету атомные двигатели. С ними не страшны препятствия, которые сейчас стоят на пути во вселенную.

В самом деле, расчеты говорят, что энергия атома даст скорость истечения газов не два, а шесть, десять, двенадцать и более километров в секунду.

Перейти на страницу:

Похожие книги

100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука