Такая точка зрения легко бы вытеснила представления о Сингулярности, если бы за ее торжество не приходилось платить непомерную цену. Дело в том, что само предположение о выдающейся роли объемной вязкости в начальной фазе сверхгорячего вещества очень трудно оправдать данными о вязких средах. То, что вязкость может выйти на первый план в поздние космологические эпохи и даже определить будущее Вселенной, гораздо правдоподобней. Не слишком сильным, но приятным утешением для программы вязких моделей служит вытекающее из них предсказание, что благодаря почти незаметной в начале вязкости открытая Вселенная должна в далеком будущем перейти в стационарный режим с постоянной и, возможно, не слишком малой плотностью вещества.
Однако главным тормозом на пути такого рода борьбы с Сингулярностью оказались так называемые анизотропные модели.
Изотропия (равноправие всех трех направлений в пространстве) принята в стандартной фридмановской картине просто на основе того факта, что наблюдаемые на больших расстояниях галактики распределены равномерно по всем направлениям. Изотропно, согласно современным данным, и реликтовое излучение. Значит, можно предположить, что, по крайней мере, с момента отрыва излучения выделенных направлений не было. Но сохранялось ли такое положение вплоть до Сингулярности — вот в чем вопрос!
А вдруг непосредственно после Первовзрыва Вселенная была резко анизотропной, и за какие-то доли первой секунды следы неэквивалентности направлений затерялись? Уравнения Эйнштейна или какие-то общие соображения такую возможность вовсе не исключают. Ясно, что она не самая простая, но простота — не тот аргумент, когда речь идет о весьма серьезном обобщении.
Отнюдь не обязательно, чтобы пространство вышло из точки сразу в привычной 3-мерной форме, одно или два независимых направления в нем сначала могли быть заметно подавлены. Это порождает очень интересные и глубокие исследования ранней Вселенной, даже независимо от несколько фантастической гипотезы эволюции размерности физического пространства.
Анизотропия начисто забивает сколь угодно сильную вязкость в пределе t (0, и Сингулярность восстанавливается. Именно с помощью анизотропных моделей удалось выяснить характер общих решений эйнштейновских уравнений в самые ранние моменты и показать, что особая точка из них не устраняется. Это в какой-то степени возвращает проблему Сингулярности к исходным позициям, однако с очень важным дополнением, судя по всему, решить ее в рамках классической теории гравитации вообще нельзя.
В свою очередь, анизотропный подход породил серьезную физическую проблему — в лабораторных экспериментах ничего подобно неравноправию пространственных направлений пока не наблюдалось. Не исключено, что никаких современных проявлений анизотропии пространства измерить нельзя ни в галактических, ни тем более в земных масштабах. Информация о ней может быть запечатана лишь в реликтах самых первых мгновений, скажем, в гравитационном излучении эпохи Первовзрыва. В таком случае мы столкнулись бы с чисто космологическим законом физики, практически не играющим роли в меньших масштабах.
Нечто специфически космологическое использовалось теоретиками и раньше. Сам Эйнштейн строил в 1917 году первые космологические решения своей теории в виде статического распределения вещества в пространстве положительной кривизны. Для этого ему пришлось дополнить свои уравнения, вводя в них особую размерную константу (так называемый «космологический член» или « — член»). Фактически с этой константой в физику должна была войти новая сила отталкивания, не имеющая аналогий в ньютоновском законе тяготения и заметная только в космологических масштабах. Эйнштейн сам характеризовал это обобщение, как «неоправдываемое нашими действительными знаниями о гравитации».
Его решение описывало в среднем вечный и неизменный мир, где вообще не было никаких неприятностей, вроде Сингулярности. То, что этот мир скучен, а — член выглядит искусственно, полбеды. Хуже другое — в нем нет эффекта Хаббла, и он неустойчив по отношению к самым малым возмущениям. Любое такое возмущение неизбежно подтолкнуло бы его к сжатию или расширению, независимо от наличия или отсутствия — члена. Поэтому модели Фридмана и Лемэтра практически без боя вытеснили статическую модель[111]
.Однако традиция, связанная с изменением самих уравнений гравитационного поля, нашла продолжение в десятилетия, последовавшие за хаббловским открытием. Слишком малый возраст Вселенной, полученный в первых измерениях, открыл путь очень любопытной идее: «константа Хаббла» — это настоящая константа, и к возрасту Вселенной она вообще отношения не имеет. Вселенная вечна, ее средняя плотность постоянна, а разбегание галактик эту плотность не снижает, поскольку повсюду происходит творение вещества со скоростью порядка 1 протона в секунду в кубике объемом 300 млн. куб. км.
Иными словами, имеет место как бы компенсирующее впрыскивание частиц, возникающих «из ничего».