Читаем Открытие Вселенной - прошлое, настоящее, будущее полностью

Следует подчеркнуть, что теория гравитации с самого начала развивалась как сугубо статическая. Закон Ньютона фиксировал вид силы, действующей между двумя массами на определенном расстоянии, и не касался иных задач. После создания специальной теории относительности стало ясно, что любое взаимодействие должно распространиться с конечной скоростью, не превышающей с. Это следовало отнести и к гравитации. Отсюда немедленно вытекала идея об особом переносчике тяготения — гравитационном поле и конкретном проявлении этого поля в форме гравитационных волн.

Предсказание таких волн — одно из первых и почти очевидных следствий эйнштейновской общей теории относительности. Гравитационные волны появляются в простейшем линейном приближении этой теории в качестве решений, во многом похожих на то, что известно из электродинамики. Оставалось только обнаружить новые волны экспериментально и получше их использовать. Впереди маячили блестящие перспективы генерации тяготения в иные миры, дистанционного управления кривизной пространства-времени…

Эти перспективы маячат до сих пор, реализовавшись пока лишь на страницах научной фантастики. И вот почему так получилось.

Уравнения Эйнштейна очень сложны и в отличие от уравнений максвелловской электродинамики нелинейны. Поэтому получить физически прозрачное точное решение для гравитационной волны нелегко, трудно даже определить однозначный критерий ее существования и, тем более, дать полную постановку задачи на излучение. Более того, длительное время мнения теоретиков колебались между безусловным признанием реальности этих волн и полным ее отрицанием.

Несколько определенней выглядит ситуация с заведомо слабыми гравитационными волнами, которые представляются чем-то вроде небольшой колебательной ряби на фоне данной геометрической структуры пространства-времени (чаще всего плоского или соответствующего фридмановским моделям). Физический анализ здесь много проще, но приближения есть приближения, оценки их пригодности тоже очень непростое дело.

Разумеется, все рассуждения крайне сократились бы, заготовь природа какой-то источник, доступный прямому и достаточно простому эксперименту. Именно в его отсутствии кроется главная причина всех трудностей. Слишком мал поток энергии, который могут давать более или менее понятные источники гравитационных волн.

Для системы Солнце-Юпитер излучаемая мощность достигает всего несколько сотен ватт, а длина волны около 2 парсеков! Гораздо сильней излучают тесные системы двойных звезд — их гравитационная светимость достигает 2.1025 Ватт, то есть нескольких процентов от общей светимости Солнца (L » 3,8.1026 Вт). Юпитер близок, но дает слишком малую мощность, двойные звезды неплохо излучают гравитационные волны, но, увы, далеки поток от конкретной пары вряд ли доступен регистрации. Общий поток гравитационного излучения 20 миллионов двойных звезд Галактики вблизи поверхности Земли не превышает 10–10 Вт/м2 (попробуйте уловить 1 Ватт мощности, рассеянный по площадке со стороной 100 км!).

Наряду с такими стационарными излучателями большую роль могут играть импульсные вспышки, связанные с внезапным сближением и даже столкновениями звезд в скоплениях и, особенно, в центральных областях галактик. Например, при прямом столкновении двух звезд типа Солнца около 1/800 части их суммарной массы может выделиться в импульс гравитационного излучения — за очень небольшое время выделится до 4,5.1044 Дж энергии. Гораздо эффективней двойных звезд должны испускать гравитационные волны такие космические объекты, как пульсары, квазары и черные дыры. При не слишком сильных допущениях гравитационная светимость несколько деформированной вращающейся нейтронной звезды может достигать 1031 Вт, то есть порядка пятой части общей светимости.

Еще более впечатляющая картина вырисовывается при взрывах квазаров, гравитационная светимость которых квадратично зависит от мощности взрыва Р: Lg ~ (G/c5) Р2.

Для взрыва с характерным энерговыделением 1052 Джоулей за время порядка 3-х лет гравитационная светимость достигает 1038 Ватт. Это, пожалуй, превышает полную светимость звезд обычной Галактики.

Другой не менее эффектный механизм мощнейшего гравитационного импульса — слияние черных дыр, когда в излучение переходит около 30 % их суммарной массы.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже