Читаем Открытие Вселенной - прошлое, настоящее, будущее полностью

Пожалуй, самыми интересными объектами оказались так называемые черные или молекулярные облака. Во-первых, они являются самыми массивными из наблюдаемых галактических объектов (М 'A 1000 М). Предполагают, что в них сосредоточено не менее 1 % массы Галактики. Во-вторых, они содержат практически все зарегистрированные типы космоорганических молекул. Концентрация таких молекул относительно всего состава черного облака достигает 10-8-10-7, то есть суммарная масса его органики (М ~ 1028–1029 г) превышает массу планеты типа Земля. А во всей Галактике черные облака могут содержать не менее 30М органики. Если согласиться с довольно правдоподобной и общепринятой оценкой массы органики в Солнечной системе 1023 г и смело предположить, что в среднем вблизи всех остальных 1011 звезд Галактики ее примерно столько же, то получатся вполне сопоставимые результаты. Однако, скорее всего, перевес будет на стороне черных облаков.

Эта весьма эффектная, хотя и грубая оценка показывает, что органохимический спектр Вселенной вовсе не локализован по крайне малым окрестностям особо удачливых планет. В подходящих температурных условиях нет никаких препятствий для образования органических молекул в чрезвычайно разреженной (средняя концентрация 100-10000 атомов водорода в кубическом сантиметре) среде[151]. Однако плотность черных облаков, видимо, возрастает в их центральных областях, где и должны концентрироваться органические соединения. В формировании этих соединений важную каталитическую роль играют пылинки, на поверхности которых синтез органики должен идти особенно охотно.

Очень важна также радиационная защита, естественно выстраиваемая пылью внешних областей черного облака. Дело в том, что жесткое космическое излучение долгое время рассматривалось как решающий теоретический аргумент против сколь-нибудь заметного накопления органики в газо-пылевой среде. Видимо, черные облака успешно справляются с этой трудностью.

К сожалению, пока в них не обнаружено следов аминокислот, однако соответствующий синтез во внутренних областях вряд ли слишком маловероятен. Например, в Стрельце В2 есть метанимин (CH2NH), и он мог бы синтезироваться с муравьиной кислотой (НСООН) в глицин — аминоуксусную кислоту. Но концентрация этой аминокислоты вдоль луча зрения может лежать ниже достигнутого порога регистрации. Вполне вероятен там и синтез некоторых азотистых оснований нуклеиновых кислот.

Хотя на метеоритах найдены ароматические полимеры (они-то и составляют до 90 % органики углистых хондритов), пока ничего нельзя сказать о полимеризации таких соединений, как нуклеиновые кислоты и белки.

Нетрудно, разумеется, придумать условия для преодоления этого барьера (локальные источники энергии, повышенная концентрация катализаторов и т. д.), и вряд ли эти условия будут слишком искусственны. Но вряд ли они будут сильно отличаться от тех условий, которые привели к появлению протобионтов в первый миллиард лет эволюции Земли. Отличия результатов синтеза могут заключаться в ином аминокислотном составе белков (не наши 20!) или несколько иной структуре ДНК, что, конечно, даст отличный от земного генетический код, и совсем уже труднопредсказуемые последствия для верхних ветвей эволюции. Любопытно было бы помечтать о разумных существах, способных развиться в столь необычных условиях.

Но это слишком далеко идущая экстраполяция. В своем научно-фантастическом романе «Черное облако» Фрэд Хойл выдвинул идею как раз такого рода, причем за много лет до открытия реальной органики в черных облаках.

Нас пока будут интересовать более ограниченные выводы.

Видимо, органические молекулы и биомономеры — довольно распространенное космическое явление. Можно полагать, что дальнейшие этапы усложнения структуры успешно протекают в более специфических и соответственно более редких условиях. По современным представлениям все этапы от формирования биополимеров до технически развитых цивилизаций в первую очередь связываются с наличием подходящей планеты.

Считая образцом такой планеты Землю, мы можем попытаться оценить распространенность подобных объектов в Галактике.

Подходящие планеты — жизнь

Связывая дальнейшие пути эволюции с приповерхностным слоем планет, нужно найти какую-то разумную модель, где, во-первых, планеты — типичное явление, во-вторых, у некоторых из них условия на поверхности по крайней мере не разрушительны для известных типов биологических структур. Наконец, неплохо, чтобы эта модель допускала развитую жизнь на Земле и хоть в какой-то степени объясняла факт ее отсутствия на других планетах Солнечной системы.

Тем самым мы, конечно, резко сужаем горизонт поиска — фактически дело ограничивается существами, очень близкими к нам по биологической конституции. Зато мы хотя бы знаем, о какой конституции идет речь.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже