На той или иной стадии реализации находятся и другие проекты, работы на ускорителях, которые позволят экспериментально в деталях проверить электрослабую теорию, и поискать новые экзотические частицы, лежащие в рамках ее предсказаний (так называемые хиггсовские бозоны) и не связанные с ней (например, новые резонансы, соответствующие tt-кварковой паре, подобно тому, как cc соответствует J/? — мезону, а J/ -мезону, а bb — !-мезону).
Разумеется, при всей своей важности поиск новых частиц не составляет единственной цели. Очень большие надежды возлагаются на прояснение картины сильных взаимодействий. Разгоняя протоны, мы фактически разгоняем кварковые пучки (но, конечно, на каждый кварк приходится лишь какая-то доля энергии, скажем, 1/3 или того меньше). Можно полагать, что характер межкварковых взаимодействий с ростом энергии станет понятней. Важная задача — выявить закономерности синтеза адронов из горячего кварк-глюонного вещества, образующегося в области взаимодействия.
Астрофизические и космологические последствия установления этой картины трудно переоценить. Одна только возможность открытия — пусть крайне гипотетичная — каких-то неадронных форм относительно стабильной организации кварк-глюонного вещества способна воодушевить на самые смелые экспериментальные проекты.
Но в программах работ стоят и стратегические задачи дальнего прицела. В настоящее время многие физики верят в вариант так называемого Великого Объединения — теорию, которая описала бы кварки, лептоны и промежуточные бозонные поля единой схемой некоторого электроядерного взаимодействия. Было бы приятно выяснить, что на расстояниях ~ 10–29 см лептоны и кварки ведут себя как одно семейство. Неплохие модели такого объединения уже заготовлены, но масштаб его соответствует фантастически высоким энергиям 1014–1015 ГэВ (~10-5 : 10-4 ЕР!). Именно такого порядка массы предсказывают модели великого объединения для промежуточных Х-бозонов, за счет которых кварки могут трансформироваться в лептоны и наоборот.
Реально процесс кварк-лептонных переходов ведет к предсказанию таких интереснейших явлений, как нестабильность протона. Например, протон может самопроизвольно распадаться на 0-мезон и позитрон (р " 0 + е+). Происходит это потому, что d-кварк и один из u-кварков протона, обмениваясь Х-бозоном с зарядом + 4/3, преобразуются в анти-u-кварк и позитрон. Оставшийся u-кварк и получившийся и объединяются в 0-мезон, а позитрон свободно покидает область взаимодействия.
Вся совокупность наблюдений указывает на высокую стабильность протона — его среднее время жизни не меньше 1032 лет, иначе окружающий мир выглядел бы совсем по-иному. Поэтому вероятность процессов распада должна быть крайне мала, и, по сути, из-за этого и приходится выбирать столь огромную массу Х-бозона. Строительство ускорителя для прямой генерации таких суперчастиц — дело далекого будущего, но распад протона ищут уже сейчас. Если его среднее время жизни действительно не превышает 1031 или 1032 лет, то в объеме вещества, заключающем, скажем, 1033 протонов (порядка 1000 тонн), должно происходить в среднем 100 или 10 распадов в год, соответственно. Хотелось бы верить, что к моменту выхода этой книги распад протона станет экспериментально установленным фактом, и мы получим сильнейшее указание на то, что при энергиях частиц ~ 1015 ГэВ (на расстояниях ~ 10–29 см) электрослабые и цветные межкварковые взаимодействия сливаются в единую электроядерную силу.
Гипотетический распад протона (р " 0 + е+)
Однако стремление к энергии ~1015 ГэВ представляется в основном проблемой, завещаемой 21 веку. Не все так просто и с очень привлекательным, но так и не зарегистрированным распадом протона — похоже, что в теоретических схемах вступают в игру параметры, подозрительно близкие к планковской области[212]. Тем более велик шанс натолкнуться на необычные — хотя и нельзя сказать, чтоб столь уж неожиданные, — явления, связанные с лептонами и кварками.
Попытка сохранить внутрипротонные сечения взаимодействия кварков на уровне > P резко ограничивает массы Х-бозонов в схеме типа великого объединения: MX `A 3.108 mp. Но если такие Х-бозоны по-прежнему давали бы переходы кварк-лептон, протон жил бы в среднем не более миллиона лет, и во Вселенной не было бы даже водорода. Таким образом, слишком далекие экстраполяции таят в себе немало неожиданностей!
Не представляют ли 6 лептонов низшие уровни какого-то богатого лептонного спектра, а кварки — соответственно кваркового? Иными словами, не возникнет ли со временем чего-то в духе «субадронной спектроскопии», где лептоны и кварки (и, возможно, ныне известные бозоны) окажутся сверхплотными связанными состояниями неких субкварков? Эти вопросы весьма важны, тем более что пока нет удовлетворительных идей по поводу происхождения лептонных и кварковых масс. Варианты со следующим структурным уровнем вещества активно изучаются теоретиками.