Несколько раньше, в 1963 году, американский астроном Мартин Шмидт открыл самые далекие и, возможно, самые экзотические объекты Вселенной квазары[96]
. Главная их наблюдательная особенность заключалась в огромном красном смещении, в несколько раз превышающем красные смещения самых удаленных галактик. Отсюда следовало, что квазары убегают с очень большими скоростями (близкими к скорости света) и находятся практически на предельно больших расстояниях, доступных наблюдению (до нескольких миллиардов парсеков). Таким образом, квазары оказались реликтом ранних эпох развития Вселенной и, в известном смысле, стали последним и самым тяжелым камнем преткновения для попыток сохранить более или менее стационарную картину. В течение нескольких лет после открытия выяснилось, что квазары обладают целым набором необычных свойств. Большинство из них весьма компактны и выглядят, как очень активные галактические ядра, занимая объем порядка Солнечной системы. Но при этом они излучают энергию не слабее больших галактик — светимость квазаров достигает 1038-1040 Вт, что в сотни раз превышает светимость Галактики. Естественно полагать, что излучение такой колоссальной мощности у сравнительно небольших объектов возможно лишь в той фазе, когда обычные галактики еще не сформировались или находились на какой-то ранней стадии формирования. Иными словами, на границе наблюдаемой Вселенной обнаружилось явление, которое свойственно довольно раннему снимку Вселенной, и это нагляднейшее подтверждение ее эволюции.Крупнейшим достижением последних лет стало обнаружение огромных скрытых масс материи, скрытых в том смысле, что они пока недоступны обычным телескопическим наблюдениям.
Разумеется, идея о том, что во Вселенной могут существовать не только объекты, достаточно яркие для наших телескопов, отнюдь не нова. Фактически со времен открытия Урана и последовавшей затем Нептуновой истории астрономия вышла в своеобразный гравитационный диапазон, отыскивая небесные тела по их чисто гравитационному проявлению. Но вот при попытке оценить плотность массы в масштабе галактических скоплений и Вселенной в целом возник качественно новый уровень. Дело в том, что в соответствующих оценках мы долгое время были ограничены светящимися массами — именно по «плотности светимости» (средней светимости единицы объема пространства) обычно и оценивалась средняя плотность вещества. Однако группа эстонских астрономов под руководством Я. Э. Эйнасто и здесь — в предельно больших масштабах попыталась применить принципы гравитационной астрономии.
Исследователи из Тарту обратили внимание на то, что скорости отдельных галактик в скоплениях очень велики — тысячи километров в секунду, и, чтобы удержать столь быстрые компоненты, скопления должны обладать достаточно сильным полем тяготения, то есть массами порядка 1014
-1015 М). Но это на 1–2 порядка превышает суммарную массу светящихся галактик.Было также установлено, что спутники больших галактик (типа Магеллановых Облаков — спутников нашей Галактики) движутся со скоростями, практически не зависящими от расстояния до центральной галактики — в очевидном противоречии с третьим законом Кеплера, согласно которому скорость спутника должна убывать с ростом расстояния до центра (v (1/vr). Это означало, что галактики-спутники находятся совсем в иной ситуации, чем, например, планеты в Солнечной системе — вещество галактической системы не сконцентрировано в центральном теле, а распределено по всему объему с плотностью, убывающей к краю ((~ 1/r2
). В такой среде аналог третьего закона Кеплера действительно вел бы к независящим от расстояния скоростям спутников (центростремительное ускорение v2/r ~ GM/r2 ~ G 1/2 r3/r2 ~ const/r, т. е. v ~ const) или, что то же самое, к пропорциональности радиуса орбиты периоду обращения.Эти факты и легли в основу представления о гигантских массах, полностью определяющих гравитационные проявления скоплений и отдельных галактик и в то же время слишком слабо светящихся, чтобы обнаружить их как обычное вещество. По-видимому, скрытые массы в среднем раз в 30 превышают массу всего светящегося вещества, то есть играют решающую роль не только в описании отдельных крупных структур, но и в оценке всего космологического процесса в целом.
Природу этих скрытых масс пытались объяснить многими гипотезами прежде всего, обилием темных выгоревших звезд типа черных карликов и черных дыр. Однако теперь, в связи с обнаружением массы нейтрино, более вероятной представляется именно нейтринная модель невидимой материи. Именно массивные реликтовые нейтрино способны конденсироваться в первичные облака — зародыши сверхскоплений, крупнейших структурных единиц Вселенной.
Вероятно, теперь следует считать, что каждая крупная галактика вместе со своими спутниками и скрытым веществом (так называемой короной) образует особую связанную систему — гипергалактику, а гипергалактики формируют скопление средним размером в несколько мегапарсеков, обладающее единой мощной короной.