Читаем Открытия и изобретения, о которых должен знать современный человек полностью

Поскольку радиоволны являются наряду с видимым светом разновидностью электромагнитных колебаний, то физики сразу после создания молекулярных генераторов задумались о возможности создавать вынужденное излучение в оптическом диапазоне. В природе вещество очень часто излучает свет. От нагрева светится спираль лампы накаливания, в лесу мигают огоньки гнилушек, испускают в темноте холодное люминесцентное свечение вещества, побывавшие долгое время под прямыми солнечными лучами.

Причиной такого излучения является самопроизвольное испускание световых квантов возбужденными атомами вещества. Среди атомов любого физического тела есть т. н. энергетически возбужденные частицы. Эти атомы обладают избыточной энергией, от которой со временем избавляются путем испускания фотонов. Генератор оптических колебаний, следовательно, должен быть построен по тому же принципу. То есть он должен содержать вещество, активные атомы которого будут служить источником излучения.

Однако генератор не может самопроизвольно излучать видимый свет так, как это делает гнилушка. Ученым требовался постоянный мощный источник колебаний. В обычной системе частиц преобладают атомы с низкой энергией. Чтобы И вещество непрерывно светилось, в нем, наоборот, должны преобладать возбужденные частицы. Такую систему, называемую активной, можно получить при помощи электромагнитного поля.

Искусственное энергетическое возбуждение атомов, носящее название индуцированного, т. е. наведенного, приводит к еще одному выгодному последствию. Самопроизвольное излучение становится не только усиленным, но и когерентным. Обычное свечение гнилушки некогерентно, стало быть, фазы световых колебаний и направления движения фотонов не согласованы. Когерентное излучение отличается согласованием и по фазе, и по направлению. Дальнейшее изучение поведения фотонов и свойств активной среды показало пути к созданию оптических генераторов.

Если в активную среду попадает фотон, то он заставляет возбужденные атомы вокруг него светиться. Они выделяют энергию в виде световых квантов и переходят, таким образом, в свое обычное состояние. Причем выделяющиеся фотоны по направлению и свойствам подобны своему прародителю. Если поместить активную среду между двумя плоскими параллельными зеркалами, то такие фотоны станут многократно отражаться и переотражаться, а в результате по нескольку раз пересекут активную среду. Они, в свою очередь, вызовут излучение других атомов.

В веществе начнется лавинообразный процесс образования одинаковых фотонов. Возникающее в ходе данного процесса излучение называется стимулированным. Одно из плоских зеркал делают полупрозрачным, чтобы стимулированное и усиленное излучение выходило из активной среды в виде тонкого луча. Генератор порождает световой луч, обладающий массой достоинств и уникальных характеристик.

Во-первых, выходящее из активной среды излучение отличается ничтожно малой конусностью, другими словами — малым углом расхождения. Всякий видел, как расширяется луч прожектора, превращаясь в конус. Стимулированное излучение расходится слабо, луч напоминает по форме острейшую иглу, толщина которой равняется зачастую долям микрометра. Если направить такой луч на Луну, то он высветит на ее поверхности окружность диаметром 4 м. Трудно вообразить себе световой конус с диаметром основания 4 м и высотой 384 тыс. км!

Благодаря своей «игольчатости», как образно называют ученые особенность излучения, оно максимально концентрирует в себе энергию и обладает заданной частотой и фазой. Теоретическое обоснование работы квантовых генераторов было одновременно осуществлено Басовым и Таунсом независимо друг от друга. В 1960 г. американским ученым Т. Мейманом был построен первый квантовый генератор, активной средой которого служил синтетический рубин.

Физическое явление, на котором основаны принципы работы установки, по-английски называется light amplification by stimulated emission of radiation, что переводится как усиление световых волн путем стимулированного излучения. По начальным буквам слов, входящих в состав этого названия, оптический квантовый генератор окрестили на Западе лазером. Позднее это короткое и удобное название прижилось и в нашей стране.

Большой интерес к лазерам со стороны обывателей объясняется в немалой степени стараниями фантастов. У ученых же интерес особый. Специалистов самых разных направлений привлекают невероятные возможности применения лазерного луча в научных исследованиях и промышленности. Справедливо будет заметить, что лазеры изменили оптику, обогатив ее новыми знаниями и новыми методами исследования свойств света.

Лазерный луч и его общие свойства изучает т. н. когерентная оптика, представляющая собой новое направление в волновой оптике, смежное с квантовой оптикой. Лазеры, помогая физикам проникать в тайны материи, привели к открытиям, заложившим основы множества других оптических дисциплин.

Перейти на страницу:

Все книги серии Популярная библиотека самообразования

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Светлые века. Путешествие в мир средневековой науки
Светлые века. Путешествие в мир средневековой науки

Средние века были не только временем бесконечных войн и эпидемий, но и эпохой научных открытий и бескорыстного стремления к знанию. Средневековые мыслители и практики исследовали окружающий мир, основали первые университеты, изобрели механические часы и приборы для наблюдения за небесными светилами.В этой книге нашим проводником в мир средневековой науки станет реальный человек, монах по имени Джон Вествик, живший в XIV веке и получивший образование в крупнейшем монастыре Англии. Увлекательная история его научных трудов позволила автору показать не парадный мир звездных имен и открытий, а атмосферу научного поиска того времени, представить идеи и достижения безымянного большинства людей с научным складом ума, так часто ускользающие от внимания историков. Путешествуя с братом Джоном по Британии и за ее пределами, мы встретим любопытных персонажей тех лет: английского аббата-часовщика, французского ремесленника, ставшего шпионом, персидского эрудита, основавшего самую передовую обсерваторию в мире. Узнаем, как эти люди ориентировались по звездам, умножали римские цифры, лечили болезни и определяли время с помощью астролябии, и пересмотрим отношение к Средневековью как к темным временам.

Себ Фальк

История техники