Читаем Открытия и изобретения, о которых должен знать современный человек полностью

Возвращаясь от фантазий к реальности, заметим, что электрический заряд каждого атома в целом нейтрален, т. к. положительный заряд ядра уравновешивается отрицательным зарядом электронов. Избыток электронов превращает атом в отрицательно заряженный ион (катион), а недостаток этих частиц — в положительно заряженный ион (анион). Эта модель, однако, сильно упрощена и многого не объясняет. Противоречия удалось разрешить ученику Резерфорда, датскому физику Н. Бору, построившему квантовую модель атома. Открытие квантования электронных орбит считается одним из крупнейших достижений физики XX в. Оттого на рисунке — послании внеземной цивилизации, помещенном на борту американских автоматических станций «Пионеров», схематически отображено квантовое строение электронной оболочки атома. Модель занимает большую часть рисунка, потесняя схему Солнечной системы, строение молекулы водорода и даже изображение мужчины и женщины как двух равных представителей нашего вида — Человека разумного. Если космическое послание найдет своего адресата, то инопланетяне узнают о высоком уровне наших физических представлений.

Бор провел вычисления устойчивости электронных орбит и пришел к выводу, что у электрона во внешнем слое есть несколько дозволенных, т. е. стабильных, состояний. Во всех остальных положениях электрон утрачивает стабильность, и атом начинает терять энергию в виде излучения. Вот почему генерируют когерентный луч лазеры и тускло светят лесные гнилушки: электроны в возбужденных атомах перескакивают на недозволенные орбиты и становятся нестабильными. Состояния электрона любопытны тем, что он переходит из одного в другое скачкообразно.

Энергия электронной оболочки квантуется, т. е. делится на порции. Так происходит с энергией в любых физических процессах, но человек не замечает квантования, потому что порции энергии бесконечно малы. Нам кажется, что она расходуется плавно. Перемещения электрона из дозволенного состояния в недозволенное и наоборот не могут сопровождаться плавным изменением энергии. Ведь частица столь мала, что и энергия ее импульса ничтожна. Отсюда невероятные скачки электрона и квантование его орбит и состояний.

Разным орбитам соответствуют разные состояния и разные значения энергии электрона. От состояния электронов во внешнем электронном слое зависит способность атома вступать в химическую связь. Когда квантовую модель атома Бора объединили с представлениями о волновой природе электрона, то получилось, что никаких электронных орбит не существует. Положение электрона в заданный момент времени определить невозможно, т. к. он перемещается скачкообразно, без ускорения. В результате частица распределяется по всей своей орбите.

Орбита уже сама на себя непохожа. Поэтому было решено назвать ее электронной орбиталью — местом, где отрицательная частица пребывает с наибольшей вероятностью. Еще орбиталь именуют электронным облаком, поскольку распределенный вокруг атомного ядра, вечно пребывающий в суетном движении электрон действительно напоминает небольшое косматое облачко. Поскольку электрон обладает волновыми свойствами, то можно сказать, что вдоль всей орбитали устанавливается стоячая волна.

В 1974 г. американскими физиками Ритцем и Бартелом были с применением метода голографии впервые получены увеличенные в 500 млн раз микрофотографии атомов. Атомы принадлежали инертным газам неону и аргону. На фотографиях отчетливо выделяются размытые электронные облачки. Так ученые смогли воочию увидеть орбитали.

Изобретение устройств с рентгеновскими лучами

Однажды у писателя К. Мая, известного своими романами об индейцах, спросили его мнение касательно нашумевшего открытия В. К. Рентгена. Писатель ответил, что открытие является подлинной сенсацией, однако, как и любая сенсация, оно вскоре предастся забвению. Любопытно, что профессор Вюрцбургского университета, немецкий физик Рентген очень любил читать «ковбойские истории» К. Мая. Представлять особо великого физика не нужно, поскольку он известен всему миру как первооткрыватель рентгеновских лучей.

Рентген был выдающимся физиком-экспериментатором, причем, скорее всего, именно умение блестяще ставить опыты и добиваться однозначных результатов привело ученого к замечательному открытию. Рентген, как и Дж. Дж. Томсон, изучал электрические разряды в газах и наблюдал за катодными лучами. Собственно говоря, глубокий интерес Томсона и прочих физиков был вызван как раз открытием Рентгена. До него ученые в течение нескольких лет наблюдали катодные лучи, но так и не пришли к каким-либо серьезным выводам.

Перейти на страницу:

Все книги серии Популярная библиотека самообразования

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Светлые века. Путешествие в мир средневековой науки
Светлые века. Путешествие в мир средневековой науки

Средние века были не только временем бесконечных войн и эпидемий, но и эпохой научных открытий и бескорыстного стремления к знанию. Средневековые мыслители и практики исследовали окружающий мир, основали первые университеты, изобрели механические часы и приборы для наблюдения за небесными светилами.В этой книге нашим проводником в мир средневековой науки станет реальный человек, монах по имени Джон Вествик, живший в XIV веке и получивший образование в крупнейшем монастыре Англии. Увлекательная история его научных трудов позволила автору показать не парадный мир звездных имен и открытий, а атмосферу научного поиска того времени, представить идеи и достижения безымянного большинства людей с научным складом ума, так часто ускользающие от внимания историков. Путешествуя с братом Джоном по Британии и за ее пределами, мы встретим любопытных персонажей тех лет: английского аббата-часовщика, французского ремесленника, ставшего шпионом, персидского эрудита, основавшего самую передовую обсерваторию в мире. Узнаем, как эти люди ориентировались по звездам, умножали римские цифры, лечили болезни и определяли время с помощью астролябии, и пересмотрим отношение к Средневековью как к темным временам.

Себ Фальк

История техники