Читаем Открытия и изобретения, о которых должен знать современный человек полностью

Единственным препятствием для ученых на пути осуществления контролируемой реакции синтеза остается высокая температура «зажигания» горючего. В недрах звезд температура достигает 15 млн °С. Предполагается, что космические светила зажглись при температурах свыше 50 млн °С. Оптимальная же температура для проведения термоядерных процессов с точки зрения энергетики равна 100 млн °С. Именно до такой степени требуется нагреть смесь дейтерия и трития, чтобы с высокой эффективностью извлекать из начавшейся реакции тепловую энергию. Продуктами этой реакции являются ядра гелия и свободные нейтроны. Последними можно облучать литий для возобновления запасов трития. Что касается дейтерия, то его возобновлять необязательно, т. к. в природе он встречается в достаточном количестве (например, в морской воде на 6000 атомов обычного водорода приходится 1 атом дейтерия).

Однако управляемая реакция подразумевает не только высокие температуры, но и удержание раскаленного вещества и беспрепятственное получение полезной энергии. В противном случае окажется, что установка поглощает гораздо больше энергии, чем выделяет. Любое вещество при температурах в несколько миллионов градусов переходит в плазменное состояние. Удержать его от немедленного рассеяния можно в магнитных полях. При этом необходимо изолировать плазму от внешней среды во избежание теплообмена. Физики подсчитали, что если плазма с плотностью 1014 ядер на 1 см3 заметно остудится за 1 с, то полезную энергию получить не удастся.

Однако никакая теплоизоляция не поможет сохранять температуру плазмы приближенно постоянной. Плазма непременно прожжет изоляционное вещество и вырвется наружу. Наиболее активные частицы обязательно покинут магнитное поле. Скорость водорода внутри ионного газа плазмы при необходимой температуре равняется 1000 км/с. Следовательно, требуется удерживать плазму каким-то совершенно особым способом, создав для нее как бы магнитную ловушку. Впервые общая идея магнитной ловушки была сформулирована в конце 1940-х гг. отечественными физиками И. Е. Таммом, А. Д. Сахаровым и O. А. Лаврентьевым. Почти одновременно к сходным выводам пришел американский физик Л. Спитцер.

С 1950 г. начались активные работы по проектированию устройства, технически воплощавшего магнитную ловушку. Первоначальной моделью такого устройства был прямотрон.

Ему присвоили такое название потому, что он представлял собой прямую трубу (прямолинейную ловушку), в которой должны были разгоняться частицы. Конструкция прямотрона была несовершенной, т. к. длина такой трубы должна была равняться нескольким десяткам километров. Гораздо перспективнее оказался проект прямолинейной ловушки с магнитными «пробками» на концах. Они должны были отражать поток частиц плазмы, отбрасывая их в противоположную сторону. Длина «пробкотрона» составила бы менее 100 м.

После того как была отвергнута и конструкция «пробкотрона», физики разработали замкнутую ловушку со сведенными вместе концами. Получился ускоритель-тороид, в котором плазма могла бесконечно долго разгоняться, двигаясь по кругу. Проблема удержания быстрых частиц была решена на основе работ И. Е. Тамма по теории электромагнитного поля. Чтобы частицы не смещались в замкнутом тороидальном магнитном поле, необходимо завить его силовые линии в спираль. Для этого требуется пропустить друг через друга два тока. Первый будет создавать магнитные силовые линии в форме окружностей, тогда как второй потечет по новым силовым линиям. В результате оба тока будут генерировать общее магнитное поле с силовыми линиями, закрученными спирально. Частицы плазмы внутри тороида будут двигаться не только вдоль замкнутых линий тороидального поля, но и описывать вокруг них спираль.

В 1954 г. под руководством И. Е. Тамма была создана первая тороидальная электромагнитная ловушка для плазмы, получившая название «ТОКАМАК». Ее название представляет собой аббревиатуру, которая расшифровывается как «Тороидальная КАмера с МАгнитными Катушками». В названии подчеркнуто, что главным элементом конструкции являются катушки, создающие мощное, в несколько Тл (тесла), магнитное поле. За последующие годы ученым удалось построить еще несколько установок подобного типа, которые также были названы Токамаками.

Эти катушки напоминают гигантские трансформаторы. Рабочая камера Токамака заполняется газом, а в катушках возбуждается магнитное поле. В результате пробоя под действием вихревого поля происходит усиленная ионизация газа в камере, отчего тот превращается в плазму. Возникает плазменный шнур, движущийся вдоль тороидальной камеры и разогреваемый продольным электрическим током. Магнитные поля катушек и плазмы удерживают шнур в равновесии в вакууме и придают ему форму, которая не дает шнуру касаться стенок.

Перейти на страницу:

Все книги серии Популярная библиотека самообразования

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Светлые века. Путешествие в мир средневековой науки
Светлые века. Путешествие в мир средневековой науки

Средние века были не только временем бесконечных войн и эпидемий, но и эпохой научных открытий и бескорыстного стремления к знанию. Средневековые мыслители и практики исследовали окружающий мир, основали первые университеты, изобрели механические часы и приборы для наблюдения за небесными светилами.В этой книге нашим проводником в мир средневековой науки станет реальный человек, монах по имени Джон Вествик, живший в XIV веке и получивший образование в крупнейшем монастыре Англии. Увлекательная история его научных трудов позволила автору показать не парадный мир звездных имен и открытий, а атмосферу научного поиска того времени, представить идеи и достижения безымянного большинства людей с научным складом ума, так часто ускользающие от внимания историков. Путешествуя с братом Джоном по Британии и за ее пределами, мы встретим любопытных персонажей тех лет: английского аббата-часовщика, французского ремесленника, ставшего шпионом, персидского эрудита, основавшего самую передовую обсерваторию в мире. Узнаем, как эти люди ориентировались по звездам, умножали римские цифры, лечили болезни и определяли время с помощью астролябии, и пересмотрим отношение к Средневековью как к темным временам.

Себ Фальк

История техники