Читаем Открытия и изобретения, о которых должен знать современный человек полностью

Естественно, наука не собирается останавливаться на достигнутом. Когда изменение генотипа бактерий окажется весьма простым делом, то начнутся работы над сельскохозяйственными растениями и животными. Отдельные изыскания в этой области ведутся уже сейчас. К числу недавних открытий следует отнести обнаружение гена, удваивающего число клубней картофеля, и пр. Генная инженерия позволит выводить принципиально новые сорта культурных растений и породы домашних животных.

Ввести генетический материал в чужую клетку можно несколькими способами. Поколение трансгенных животных получается при внедрении генов в яйцеклетку матери с помощью микроинъекций. Но этот метод применим не всегда.

Ученые имеют дело со столь мелкими объектами, что манипулировать ими посредством любых инструментов невозможно. Вот почему генетики применяют для проведения операций по внедрению отрезков ДНК молекулярные векторы.

В качестве последних выступают вирусы, плазмиды и космиды. В природе постоянно происходит перенос генетической информации от одного организма другому посредством вирусов, которые распространяют инфекцию. Получается, что достаточно заразить подопытные клетки вирусами, несущими нужные гены, как эти гены окажутся внедренными в наследственный материал клеток. Вирусы самой природой устроены таким образом, чтобы внедрять свою ДНК или ее аналог РНК (рибонуклеиновую кислоту) в чужой генетический аппарат.

Впрочем, нельзя сказать, чтобы вирусам отдавалось предпочтение. Выбор вектора зависит от условий эксперимента. Плазмиды не так давно использовались чаще всего. Под плазмидами понимаются особые, кольцевые молекулы ДНК в бактериальных клетках.

В целом методы генной инженерии выглядят следующим образом. На начальной стадии, носящей название рестрикции, идет операция по извлечению нужного гена из человеческой или любой другой ДНК. На молекулу химически воздействуют ферментами, которые отщепляют необходимый отрезок. Ферменты влияют на нуклеиновую кислоту таким образом, что у отрезка остаются «липкие» концы. Это означает, что они легко присоединятся к любой другой молекуле ДНК. Затем следует процедура лигирования. На этой стадии бактериальную плазмиду рассекают ферментами и вклеивают в нее готовый ген-отрезок. Затем плазмиду склеивают веществом лигазой, чтобы она опять приняла кольцевую форму.

Третий этап носит название трансформации. Измененная плазмида (или рекомбинантная) вводится в бактериальную клетку. Это сравнительно нетрудно, поэтому ученые и пользуются плазмидными векторами. Бактерии часто обмениваются между собой генетической информацией с помощью плазмид. Этот процесс заменяет им половое размножение. К сожалению, плазмиды проникают внутрь далеко не всех бактерий. Вирусы более эффективны в этом отношении, поскольку при переносе информации они инфицируют 100 % клеток (бактерий).

Бактерии с измененным генетическим аппаратом называются трансформированными. Они впоследствии размножаются, в результате чего образуется колония генетически одинаковых организмов. Новый генотип оказывается растиражирован. Полученной колонии присваивается название клона. Поскольку клон является конечным продуктом генной инженерии, то само создание и тиражирование трансформированного наследственного материала таким путем носит название клонирования. Завершает процедуру клонирования скрининг — отбор клонов. Из множества трансгенных колоний выбирается одна, отвечающая всем требованиям. Осуществляется такой отбор за счет меток колоний радиоактивным веществом.

Генетическое конструирование включает в себя, помимо создания трансгенных существ, и другие приемы манипуляций над наследственным аппаратом. Среди этих методов числится искусственный мутагенез. Он менее впечатляет, чем операции с применением плазмид, однако весьма эффективен. Искусственный мутагенез сводится к усиленному воздействию на гены в клетках животного или растения активных веществ-мутагенов, ультрафиолета, рентгеновских лучей и прочих факторов, вызывающих изменения генов. Мутагенез протекает под контролем ученых, а потому приводит к возникновению существ с измененной в лучшую сторону наследственностью.

Искусственное сырье

В природе встречается порядка 4 млн химических соединений. Это, безусловно, большое количество. Если хранить 100-граммовый образец каждого из них в специальном сейфе какой-нибудь лаборатории, то общая масса этих образцов составит 400 т. Однако если не внимательно изучить все химические справочники, то выяснится, что науке известны свойства порядка 15 млн веществ, т. е. почти в 4 раза больше! Откуда взялись лишние 11 млн соединений, понятно без лишних пояснений. Вещества, не встречающиеся в природе, человек получает самостоятельно, совершенствуя технику проведения реакций. Рост численности новых веществ происходит преимущественно за счет синтеза полимерных соединений, возможности которого практически безграничны.

Открыто строение полимеров

Перейти на страницу:

Все книги серии Популярная библиотека самообразования

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Светлые века. Путешествие в мир средневековой науки
Светлые века. Путешествие в мир средневековой науки

Средние века были не только временем бесконечных войн и эпидемий, но и эпохой научных открытий и бескорыстного стремления к знанию. Средневековые мыслители и практики исследовали окружающий мир, основали первые университеты, изобрели механические часы и приборы для наблюдения за небесными светилами.В этой книге нашим проводником в мир средневековой науки станет реальный человек, монах по имени Джон Вествик, живший в XIV веке и получивший образование в крупнейшем монастыре Англии. Увлекательная история его научных трудов позволила автору показать не парадный мир звездных имен и открытий, а атмосферу научного поиска того времени, представить идеи и достижения безымянного большинства людей с научным складом ума, так часто ускользающие от внимания историков. Путешествуя с братом Джоном по Британии и за ее пределами, мы встретим любопытных персонажей тех лет: английского аббата-часовщика, французского ремесленника, ставшего шпионом, персидского эрудита, основавшего самую передовую обсерваторию в мире. Узнаем, как эти люди ориентировались по звездам, умножали римские цифры, лечили болезни и определяли время с помощью астролябии, и пересмотрим отношение к Средневековью как к темным временам.

Себ Фальк

История техники