Прежде чем проводить дальнейший анализ статьи, необходимо сделать одно существенное разъяснение к способу употребления преобразований Лоренца, вытекающее из природы этих преобразований. Предположим, что у нас уже есть преобразования координат, выраженные в виде математической зависимости, от системы координат равномерно и прямолинейно движущейся, в которой размещено твердое материальное тело, неподвижное относительно этой системы, к системе, покоящейся относительно первой. Предположим также, что размеры этого тела существенно меньше расстояния его от начала координат неподвижной системы. Форма этих преобразований и способ, которым они были получены, на дальнейшие рассуждения пока не влияют. Координаты, использованные при этом, берутся декартовыми, а их система – прямоугольной. Для реального вычисления координат движущегося тела в неподвижной
системе с помощью упомянутых преобразований, если начала обеих систем не совмещены, мы сначала должны иметь координаты тела в движущейся вместе с ним системе (полученные наблюдателем, находящимся рядом с телом, путем прикладывания твердого масштаба по осям относительно начала координат движущейся системы). Но наблюдатель, находящийся в неподвижной системе, не может сам по себе, даже однократно, непосредственно воспользоваться этими координатами из-за движения подвижной системы и расстояния, отделяющего наблюдателя от движущегося тела. Точно так же для вычисления координат тела в подвижной системе нужно сначала получить его координаты в неподвижной системе. Но из-за расстояния, отделяющего тело от начала координат неподвижной системы, а также из-за движения тела получить его конкретные координаты, даже однократно, в этой системе способом Эйнштейна, т. е. путем прикладывания масштаба измерения по осям не представляется возможным, так как за время, необходимое для определения расстояния тела от начала координат, оно переместится на некоторое расстояние. Пусть мы даже положим для всех координат в движущейся системе равенство их нулю, т. е. примем само движущееся тело за начало координат этой системы, наше затруднение не исчезнет, так как из-за движения тела мы не сможем прямо и непосредственно определять его координаты в неподвижной системе упомянутым уже способом – путем прикладывания твердых масштабов по осям. Кроме того, скорость движения подвижной системы также должна определяться из условий и во время конкретного эксперимента, а значит, ее необходимо найти либо в подвижной, либо в неподвижной системах, с помощью физических средств наблюдения, определяющих эту скорость. Для устранения этого затруднения при выполнении реальных вычислений необходимо, кроме математической формы преобразований, иметь еще и действующее дополнительное условие, заключающееся в том, что координаты тела, полученные в одной из систем, должны и могут быть переданы в другую систему тем или иным способом. Что и куда должно быть передано, зависит от места наблюдателя в этих системах, а способ передачи существенно зависит от формы используемых в вычислениях преобразований. Заметим только, что указанное дополнительное условие действует не только при вычислении координат, но и при применении преобразований для вычисления изменений любого значимого параметра.Отметим теперь, что, используя преобразования Лоренца для описания переноса параметров движений материальных тел из подвижной системы отсчета в неподвижную, Эйнштейн, в противоположность использованию преобразований Галилея, ограничивает набор таких параметров исключительно теми из них, которые могут передаваться при помощи распространения электромагнитных волн,
принципиально отбрасывая все остальные. Объяснить упомянутую выше особенность преобразований Лоренца (описание передачи параметров движения тел из одной координатной системы в другую при помощи распространения электромагнитного излучения) возможно, если отвлечься от математического формализма преобразований и обратиться к физической сущности описываемых при таких преобразованиях изменений.