Читаем Ответы на экзаменационные билеты по эконометрике полностью

сходится по вероятности к значению параметра

генеральной совокупности, при условии, что объём выборочной совокупности стремится к бесконечности.

На практике оценка

полученная методом наименьших квадратов, считается состоятельной оценкой параметра,

если выполняются два условия:

1) смещение оценки равно нулю или стремится к нему при объёме выборки, стремящемся к бесконечности:

2) дисперсия оценки параметра

стремится к нулю при объёме выборки, стремящемся к бесконечности:

Рассмотрим свойство состоятельности МНК-оценок на примере модели парной регрессии.

Необходимо доказать, что оценка

полученная методом наименьших квадратов, является состоятельной оценкой параметра 1для нормальной линейной модели регрессии.

Доказательство. Докажем первое условие состоятельности для МНК-оценки


Докажем второе условие состоятельности для МНК-оценки

МНК-оценка

подчиняется нормальному закону распределения с математическим ожиданием 1 и дисперсией

или

где индекс 22 указывает на расположение дисперсии параметра 1в матрице ковариаций.

Свойство состоятельности оценки

коэффициента 0 нормальной линейной модели парной регрессии, полученной методом наименьших квадратов, доказывается аналогично.

Оценка стандартной ошибки МНК-оценки

определяется по формуле:

Для модели множественной регрессии доказательство свойства несмещённости оценок параметров i, полученных методом наименьших квадратов, целесообразно провести в матричной форме:

Следовательно, оценки

полученные методом наименьших квадратов, являются несмещёнными оценками коэффициентов iнормальной линейной модели множественной регрессии.

Эффективность МНК-оценок доказывается с помощью теоремы Гаусса-Маркова.

17. Эффективность МНК-оценок МНК

Свойство эффективности оценок неизвестных параметров модели регрессии, полученных методом наименьших квадратов, доказывается с помощью теоремы Гаусса-Маркова.

Сделаем следующие предположения о модели парной регрессии:

1) факторная переменная xi– неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии i;

2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:

3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:;

4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):

Это условие выполняется в том случае, если исходные данные не являются временными рядами;

5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: i~N(0, G2).

Если выдвинутые предположения справедливы, то оценки неизвестных параметров модели парной регрессии, полученные методом наименьших квадратов, имеют наименьшую дисперсию в классе всех линейных несмещённых оценок, т. е. МНК-оценки можно считать эффективными оценками неизвестных параметров 0 и 1.

Если выдвинутые предположения справедливы для модели множественной регрессии, то оценки неизвестных параметров данной модели регрессии, полученные методом наименьших квадратов, имеют наименьшую дисперсию в классе всех линейных несмещённых оценок, т. е. МНК-оценки можно считать эффективными оценками неизвестных параметров 0…n.

Для обозначения дисперсий МНК-оценок неизвестных параметров модели регрессии используется матрица ковариаций.

Матрицей ковариаций МНК-оценок параметров линейной модели парной регрессии называется выражение вида:

где

– дисперсия МНК-оценки параметра модели регрессии 0;

– дисперсия МНК-оценки параметра модели регрессии 1.

Матрицей ковариаций МНК-оценок параметров линейной модели множественной регрессии называется выражение вида:


где G2() – это дисперсия случайной ошибки модели регрессии .

Для линейной модели парной регрессии дисперсии оценок неизвестных параметров определяются по формулам:

1) дисперсия МНК-оценки коэффициента модели регрессии 0:

2) дисперсия МНК-оценки коэффициента модели регрессии 1:

где G2() – дисперсия случайной ошибки уравнения регрессии ;

G2(x) – дисперсия независимой переменой модели регрессии х;

n – объём выборочной совокупности.

В связи с тем, что на практике значение дисперсии случайной ошибки модели регрессии G2 неизвестно, для вычисления матрицы ковариаций МНК-оценок применяют оценку дисперсии случайной ошибки модели регрессии S2.

Для линейной модели парной регрессии оценка дисперсии случайной ошибки определяется по формуле:

где

– это остатки регрессионной модели, которые рассчитываются как

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже