При построении критической области учитываются два требования:
1) вероятность того, что статистический критерий L попадёт в критическую область, если верна Н0, равна а:
данное равенство задаёт вероятность совершения ошибки первого рода;
2) вероятность того, что статистический критерий L попадёт в критическую область (область отклонения гипотезы Н0 в пользу гипотезы Н1), если верна гипотеза Н1:
данное равенство задаёт вероятность принятия правильной гипотезы.
Мощностью статистического критерия
называется вероятность попадания данного критерия в критическую область, при условии, что справедлива конкурирующая гипотеза Н1, т. е.выражениеЕсли уровень значимости уже выбран, то критическую область следует строить так, чтобы мощность критерия была максимальной. Выполнение этого требования обеспечивает минимальную ошибку второго рода, состоящую в том, что будет принята неправильная гипотеза.
22. Проверка гипотезы о значимости коэффициентов модели парной регрессии
Проверкой статистической гипотезы
о значимости отдельных параметров модели называется проверка предположения о том, что данные параметры значимо отличаются от нуля.Необходимость проверки гипотез о значимости параметров модели вызвана тем, что в дальнейшем построенную модель будут использовать для дальнейших экономических расчётов.
Предположим, что по данным выборочной совокупности была построена линейная модель парной регрессии. Задача состоит в проверке значимости оценок неизвестных коэффициентов модели, полученных методом наименьших квадратов.
Основная гипотеза состоит в предположении о незначимости коэффициентов регрессии, т. е.
Н0:0=0, или Н0:1=0.
Обратная или конкурирующая гипотеза состоит в предположении о значимости коэффициентов регрессии, т.е.
Н1:0/=0, или Н1:1/=0.
Данные гипотезы проверяются с помощью t-критерия Стьюдента.
Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают со значением t-критерия, которое определяется по таблице распределения Стьюдента и называется критическим.
Критическое значение t-критерия зависит от уровня значимости и числа степеней свободы.
Уровнем значимости
где – это доверительная вероятность попадания оцениваемого параметра в доверительный интервал. Значение доверительной вероятности должно быть близким к единице, например, 0.95, 0.99. Следовательно, уровень значимости
Числом степеней свободы
называется показатель, который рассчитывается как разность между объёмом выборочной совокупности n и числом оцениваемых параметров по данной выборке h. Для линейной модели парной регрессии число степеней свободы рассчитывается какТаким образом, критическое значение t-критерия Стьюдента определяется как
При проверке основной гипотезы вида Н0:1=0 наблюдаемое значение t-критерия Стьюдента рассчитывается по формуле:
где – оценка параметра модели регрессии
(
Показатель стандартной ошибки параметра модели регрессии
Числитель стандартной ошибки может быть рассчитан через парный коэффициент детерминации следующим образом:
где G2(y) – общая дисперсия зависимой переменной;
При проверке основной гипотезы 0=0 наблюдаемое значение t-критерия Стьюдента рассчитывается по формуле:
где
– оценка параметра модели регрессии 0;
(0) – величина стандартной ошибки параметра модели регрессии 0.
Показатель стандартной ошибки параметра 0 модели регрессии для линейной модели парной регрессии рассчитывается по формуле:
При проверке основных гипотез возможны следующие ситуации:
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|›tкрит, то с вероятностью (1-а) или основная гипотеза о незначимости параметров модели регрессии отвергается.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|=tкрит, то с вероятностью а или (1-) основная гипотеза о незначимости параметров модели регрессии принимается.
23. Проверка гипотезы о значимости парного коэффициента корреляции