а) модели с распределённым лагом, объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных;
б) модели авторегрессии, объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных;
в) модели ожидания, объясняющие вариацию результативной переменной в зависимости от будущих значений факторных или результативных переменных.
Кроме рассмотренной классификации, модели временных рядов делятся на модели, построенные по стационарным и нестационарным временным рядам.
Стационарным временным рядом
называется временной ряд, который характеризуется постоянными во времени средней, дисперсией и автокорреляцией, т. е. данный временной ряд не содержит трендовой и сезонной компонент.Нестационарным временным рядом
называется временной ряд, который содержит трендовую и сезонную компоненты.Определение. Моделью регрессии с одним уравнением называется зависимость результативной переменной, обозначаемой как
где
Можно выделить две основных классификации моделей регрессии::
а) классификация моделей регрессии на парные и множественные регрессии в зависимости от числа факторных переменных;
б) классификация моделей регрессии на линейные и нелинейные регрессии в зависимости от вида функции
В качестве примеров моделей регрессии с одним уравнением можно привести следующие модели:
а) производственная функция вида
б) функция цены
в) функция спроса
Системой одновременных уравнений
называется модель, которая описывается системами взаимозависимых регрессионных уравнений.Системы одновременных уравнений могут включать в себя тождества и регрессионные уравнения, в каждое из которых могут входить не только факторные переменные, но и результативные переменные из других уравнений системы.
Регрессионные уравнения, входящие в систему одновременных уравнений, называются поведенческими уравнениями
. В поведенческих уравнениях значения параметров являются неизвестными и подлежат оцениванию.Основное отличие тождеств от регрессионных уравнений заключается в том, что их вид и значения параметров известны заранее.
Примером системы одновременных уравнений является модель спроса и предложения, в которую входит три уравнения:
а) уравнение предложения:
б) уравнение спроса: =b0+b1* Рt+b2*It;
в) тождество равновесия:
где
В модели спроса и предложения выражаются две результативные переменные:
а)
б)
5. Классификация эконометрических моделей
Общая классификация эконометрических или экономико-математических моделей включает более десяти основных признаков, но с развитием экономико-математических исследований проблема классификации данных моделей всё более усложняется. Помимо появления новых типов моделей (особенно смешанных типов) и новых признаков их классификаций, также идёт процесс интеграции моделей различных типов в более сложные, комбинированные модельные конструкции.
Рассмотрим несколько ключевых классификаций эконометрических моделей:
1) классификация эконометрических моделей по целевому назначению:
а) теоретико-аналитические модели, которые используются при исследовании общих свойств и закономерностей экономических процессов;
б) прикладные модели, которые используются при решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления);
Также эконометрические модели могут быть использованы при исследовании различных сторон народного хозяйства и его отдельных частей.
2) классификация эконометрических моделей по исследуемым экономическим процессам и содержательной проблематике. При этом выделяются:
а) модели народного хозяйства в целом и его отдельных подсистем-отраслей, регионов и т. д.;
б) комплексы моделей производства и потребления;