Во втором уравнении исключена переменная Pt–1 и матрица К=[a2]. Т.к. определитель данной матрицы не равен нулю, следовательно,
Т.к. уравнения спроса и предложения являются точно идентифицированными, то и система уравнений в целом точно идентифицирована.
Приведённая форма системы уравнений модели спроса-предложения:
90. Косвенный метод наименьших квадратов (КМНК)
В системе одновременных уравнений каждое уравнение не может рассматриваться как самостоятельная часть системы, поэтому оценки неизвестных коэффициентов данных уравнений нельзя определить с помощью классического метода наименьших квадратов, т. к. нарушаются три основных условия применения этого метода:
а) между переменными системы уравнений существует одновременная зависимость, т. е. в первом уравнении системы
б) наличие проблема мультиколлинеарности, т.е. во втором уравнении системы
в) случайные ошибки уравнения коррелируют с результативными переменными.
Следовательно, если неизвестные коэффициенты системы одновременных уравнений оценивать с помощью классического метода наименьших квадратов, то в результате мы получим смещённые и несостоятельные оценки.
Косвенный метод наименьших квадратов
используется для получения оценок неизвестных коэффициентов системы одновременных уравнений, удовлетворяющих свойствам эффективности, несмещённости и состоятельности.Косвенный метод наименьших квадратов применяется только в том случае, если структурная форма системы одновременных уравнений является точно идентифицированной.
Алгоритм метода наименьших квадратов реализуется в три этапа:
1) на основе структурной формы системы одновременных уравнений составляется её приведённая форма, все параметры которой выражены через структурные коэффициенты;
2) приведённые коэффициенты каждого уравнения оцениваются обычным методом наименьших квадратов;
3) на основе оценок приведённых коэффициентов системы одновременных уравнений определяются оценки структурных коэффициентов через приведённые уравнения.
Рассмотрим применение косвенного метода наименьших квадратов на примере структурной формы модели спроса и предложения:
Было доказано, что структурная форма модели спроса и предложения является точно идентифицированной, поэтому для определения оценок неизвестных параметров данной модели можно применить косвенный метод наименьших квадратов.
1) запишем приведённую форму модели спроса и предложения:
2) определим оценки коэффициентов приведённой формы модели спроса и предложения с помощью обычного метода наименьших квадратов. Тогда система нормальных уравнений для определения коэффициентов первого уравнения приведённой формы модели будет иметь вид:
Система нормальных уравнений для определения коэффициентов второго уравнения приведённой формы модели записывается аналогично. Решением данных систем нормальных уравнений будут численные оценки приведённых коэффициентов
Для определения по оценкам приведённых коэффициентов получить оценки структурных коэффициентов первого уравнения, необходимо из второго приведённого уравнения выразить переменную
91. Метод инструментальных переменных
Метод инструментальных переменных основан на критике М. Фридменом оценивания кейнсианской функции потребления.
Общий вид функции потребления:
где
В соответствии с кейнсианской трактовкой модели потребления, коэффициент автономного потребления
К основным недостаткам модели потребления можно отнести:
1) оценки неизвестных коэффициентов модели регрессии, рассчитанные традиционным методом наименьших квадратов, изменяются год от года;
2) в ходе экспериментов было доказано, что оценка коэффициента β для фермерских хозяйств ниже, чем для городского населения.
М. Фридмен показал невозможность применения традиционного метода наименьших квадратов для оценивания неизвестных коэффициентов модели регрессии (1) с помощью теории постоянных доходов.
Предположим, что справедливы следующие равенства: