Читаем Озадачник полностью

Правильный ли ответ я дал? Давайте посмотрим. Есть шесть товаров с разной ценой, для определенности пусть они стоят 1, 2, 3, 4, 5 и 6 руб. Пробиваем два чека, в одном из них с необходимостью будет товар ценой 1 руб., и именно такой будет скидка по этому чеку. Значит, нужно сделать так, чтобы во втором чеке самый дешевый товар был как можно дороже. Это возможно сделать, только если два самых недорогих товара (из оставшихся пяти) поместить в первый чек – а это вещи ценой 2 и 3 руб. Тогда в первом чеке у нас товары за 1, 2 и 3 руб., во втором – за 4, 5 и 6. Получается, совет жене я дал совершенно правильный. Нетрудно распространить это правило и на любое другое число товаров, кратное трем: рассуждая аналогичным образом, мы получим, что всегда нужно группировать товары по цене (по возрастанию или по убыванию) и в каждом чеке пробивать ближайшие «тройки». Можно еще задаться вопросом: если покупаешь три вещи, что выгоднее – чтобы они были в разную цену или одну и ту же? Несложно показать, что максимальная скидка (33 %) достигается, когда вещи стоят одинаково, в противном случае она может быть значительно ниже (в примере трех вещей ценой в 1, 2 и 3 руб. скидка составляет 1/6 = 17 %).

Эта задача кажется мне замечательной вот по какой причине: она наглядно показывает, что сложные расчеты и рассуждения применимы не только в высокой академической науке, но и в самой что ни на есть приземленной, мещанской сфере, к каковой, вне всяких сомнений, относятся промоакции в магазинах. Казалось бы, никакой связи – а она есть. Любите науку, это взаимно!

Николай ПолуэктовМосква, 31 мая 2016 г.<p>Основная литература по теме</p>

Часть заданий в книге – переработанные классические задачи. Список литературы, содержащей исходные задачи и горячо рекомендуемой к прочтению:

Арнольд В. И. Задачи для детей от 5 до 15 лет. – М.: МЦНМО, 2004.

Гарднер М. Крестики-нолики. – М.: Мир, 1988.

Дербишир Дж. Простая одержимость. – М.: Астрель, 2010.

Люка Ф. Математические развлечения. – СПб.: Книжный Клуб Книговек, Северо-Запад, 2010.

Мостеллер Ф. Пятьдесят занимательных вероятностных задач с решениями. – М.: Наука, 1975.

Смаллиан Р. Как же называется эта книга? – М.: ИД Мещерякова, 2007.

Стюарт И. Величайшие математические задачи. – М.: Альпина нон-фикшн, 2015.

Фелдман Д. Непостижимости. – М.: КоЛибри, 2007.

Шень А. Игры и стратегии с точки зрения математики. – М.: МЦНМО, 2007.

Перейти на страницу:

Похожие книги