Можно не сомневаться, что возможностей для разложения фреона в тропосфере очень много. Например, было установлено, что если фреон находится не сам по себе, а на поверхности частиц песка, то он может разлагаться и менее энергичным ультрафиолетовым излучением, когда он свободен. То есть в этом случае фреон может разлагаться тем ультрафиолетовым излучением, которое достигает поверхности Земли (с длиной волны больше 300 нм). Если это так, то возможности разложения фреонов имеются не только на поверхности Земли, где распространен песок, но и в атмосфере, поскольку в атмосфере находится большое количество почвенных аэрозольных частиц. Мировые пустыни (например, в Северной Африке) поставляют в атмосферу большое количество кварцевых частиц. По-видимому, сейчас еще рано говорить о том, какое количество фреонов погибает в тропосфере, не дойдя до стратосферы. Тем не менее некоторые предварительные оценки, проведенные специалистами (конечно, при большом числе предположений), имеются. Согласно им таким путем может погибать даже половина всех фреонов. Но другая половина все же остается и попадает в стратосферу. А может, в тропосфере исчезает не 50 % фреонов, а все 90 или 99 %? Отрицать сейчас такую возможность никто аргументированно не может.
Мы уже говорили о том, что озон используется специалистами в качестве трассера, что-то вроде меченого атома, наблюдая за перемещением которого можно определить, куда и как быстро двигалась вся воздушная масса, к которой вынужден двигаться озон. В 1971 году специалисты высказали идею, что таким трассером может служить не только озон, но и сами фреоны: достаточно аккуратно замерять их изменение в разных местах земного шара, и таким путем можно получать картину глобальной циркуляции атмосферы. Поскольку фреоны выбрасываются в атмосферу главным образом в северном полушарии, то в наиболее явном виде эта идея может использоваться для определения с помощью фреонов циркуляции атмосферного газа из северного полушария в южное. С 1973 года проводятся измерения количества фреонов в атмосфере как на стационарных, постоянно действующих станциях, так и на станциях с эпизодическим режимом работы.
Естественно, для проведения измерения фреонов в атмосфере необходимо было разработать соответствующие методы и создать необходимые приборы. Методы должны базироваться на тех процессах, в которых участвуют фреоны. Это прежде всего процессы поглощения света с определенной длиной волны. Так, фреоны поглощают инфракрасное излучение с длинами волн в диапазоне от 9 до 12 мкм. Измеряя интенсивность этого излучения (исходящего от Солнца), можно получать информацию о количестве фреонов на всем пути прохождения излучения. Как уже было сказано раньше, при этом получается общее содержание поглощающего вещества (в данном случае фреонов) во всем столбе атмосферы с единичным поперечным сечением. На этом же принципе можно проводить и измерения фреонов в приземном слое воздуха. Но при этом в методику измерений вводятся дополнительные элементы. В частности, заставляют поглощающийся луч света проходить многократно через воздух с определенным количеством фреона. Это устройство называется многоходовой кюветой. Имеются и другие технические возможности.
Измеряют количество фреонов и другими методами. В частности, применяется для этого классический способ — на основании анализа проб атмосферного воздуха. Но метод хроматографии, успешно применяемый для определения количества других составляющих атмосферы, которых больше, чем фреонов, здесь работает на пределе. Этот метод имеет чувствительность до 10-11
-10-12. Здесь речь идет не об абсолютной величине концентрации данной составляющей атмосферы (например, фреонов), а об объемном (по отношению к озону). Так вот, количество фреонов в незагрязненной атмосфере таково, что его объемное отношение смеси находится в пределах 10-10 — 10-11. Другими словами, чтобы измерения были достоверными, необходимо повышать чувствительность измерительного прибора. Специалисты достигают этого разными путями. Одни проводят измерения газовым хроматографом в сочетании с масс-спектрометром. Масс-спектрометр позволяет сортировать, различать частицы по массам. Эта дополнительная информация и используется для повышения разрешения газового хроматографа. Другие специалисты до проведения измерений в отработанных пробах воздуха проверяют их криогенное обогащение. При этом отношение смеси увеличивается в известное число раз. Поэтому измерять его можно более уверенно. Таким путем чувствительность прибора (газового хроматографа) увеличивается примерно в 10 раз. Это крайне необходимо там, где отношение смеси фреонов малое, например в стратосфере.