Японские исследователи анализировали полученные ими данные на станции Сева за период 1980–1985 годов с целью выяснения роли температуры стратосферы в образовании озонной дыры в Антарктике. Изучалось изменение от года к году средней для данной широты температуры средней стратосферы. Выяснилось, что температура средней стратосферы в приполярных районах Антарктики ниже, чем в Арктике, не только весной, но и во все сезоны года. В последние годы прослеживается тенденция уменьшения температуры стратосферы в Антарктике в зимний сезон, причем период этого уменьшения (то есть похолодания) от года к году удлиняется. Это, несомненно, отражается на времени существования весенней арктической озонной дыры и ее глубине, если можно так сказать.
Были проведены специальные исследования связи между образованием стратосферных облаков и увеличением СО2
. Они показали, что указанная выше причинно-следственная цепочка, приводящая к понижению концентрации озона, действительно имеет место. Исследования подтверждают, что увеличение концентрации СО2 в стратосфере приводит к понижению там температуры стратосферы до того уровня, при котором эффективно образуются стратосферные полярные облака.Авторы исследования логично заключают, что если будет продолжаться увеличение СО2
, то не только в Антарктике (где температура стратосферы ниже), но и в Арктике будут достигнуты условия столь низких температур, при которых формируются полярные стратосферные облака, а значит, образуются и озонные дыры.Чтобы выяснить роль аэрозолей в уменьшении количества озона на американской антарктической станции Мак-Мердо проводились измерения аэрозолей различных размеров в 1986 и 1987 годах. Измерения проводились с помощью приборов, установленных на шарах-зондах (баллонах) в весенне-летнее для южного полушария время (август-ноябрь). В 1986 году было осуществлено 6 полетов шаровых зондов, а в 1987 году — 12. Измерялась, естественно, и концентрация озона. Результаты этих экспериментов показывают, что с озонной дырой тесно связаны аэрозоли малых размеров, с радиусом, примерно равным 0,02 мкм. Слой таких частиц действительно наблюдался в трех полетах в октябре 1986 года над озонной дырой. Но любопытно, что в конце августа 1987 года эти частицы не регистрировались. Исследователи делают логичный вывод, что для образования этих частиц требуется солнечное излучение. Которого в августе на этих высотах еще нет, но оно имеется в октябре. Шары-зонды регистрировали также частицы, которые образовывали стратосферные полярные облака.
Для того, чтобы оценить роль не только западных ветров и стратосферных облаков (низких температур), но и малых газовых составляющих (хлорных и азотистых соединений прежде всего), проводились многократные измерения распределения этих составляющих как на разных широтах и долготах (например, вдоль полета самолета-лаборатории), так и по высоте.
Американские исследователи провели специальные одновременные измерения озона и аэрозолей нитратов. Эксперимент был выполнен в шести полетах самолета-лаборатории в период 17–30 августа 1987 года на высотах от 13,5 до 20,3 км в широтном поясе 56–72о
южной широты. Данные, полученные в этих экспериментах, подтвердили правильность представления, что пары азотистой кислоты конденсируются в твердые частицы стратосферных облаков с размерами (диаметром) около 1–2 мкм. Благодаря этому NO2 переходит из газообразного состояния (газовой фазы) в твердое. При этом образуется много Clx, поскольку образованное в реакции вещество ClONO2 распадается.Так, в рамках эксперимента по измерению озона в Антарктике с помощью летательных аппаратов (AAOE — Airborne Antarctie Ozone Experimrnt) в августе и сентябре 1987 года проводились измерения N2
O с помощью двух самолетов-лабораторий (ER-2 и DC-8). Самолеты с приборами пролетали выше 20 км. Один из приборов представлял собой спектрометр, использующий излучение, создаваемое лазером. Через каждый километр вдоль траектории полета самолета-лаборатории получали величину концентрации N2O. Что показали эти измерения, проводимые внутри озонной дыры в период ее развития?Данные измерений, полученные в этом эксперименте, показали, что внутри озонной дыры концентрации N2
O значительно меньше, чем за пределами дыры. На широте 69о южной широты на высоте 18 км парциальное давление N2O составило всего 90 × 10-12. Очень важен и другой результат: за все шесть недель, пока не развалился западный полярный стратосферный вихрь, распределение N2O с высотой практически не менялось.