Чтобы покинуть Землю, ракетный снаряд должен обладать начальной скоростью не менеее 7,9 километра в секунду. Но и при этой колоссальной скорости он не выйдет из сферы земного притяжения, а станет, в лучшем случае, спутником Земли. Для того же, чтобы попасть в межпланетное пространство, требуется начальная скорость 11,2 километра в секунду. Однако, если использовать силу земного притяжения, то можно улететь в межпланетное пространство на ракете, обладающей почти вдвое меньшей начальной скоростью, равной всего 5,8 километра в секунду. Вообразим, что сквозь земной шар, по диаметру, прорыт тоннель. Вместо того чтобы направить ракету вертикально вверх, бросим ее в этот воображаемый бездонный колодец.
Ракета начнет падать вниз под действием силы тяжести. По мере приближения к центру Земли скорость падения будет нарастать, и в центре земного шара эта скорость достигнет колоссальной величины — 7,9 километра в секунду.
Но вот ракета прошла центр Земли. Она продолжает падать и дальше. Однако теперь скорость ее падения так же постепенно начнет уменьшаться, как до этого возрастала. К концу тоннеля скорость ракеты упадет до нуля. Ракета остановится и начнет падать в обратном направлении. Это падение «туда и обратно», если не принимать во внимание сопротивление воздуха, будет повторяться бесконечное число раз.
Теперь вообразим, что в тот момент, когда ракета проходит центр Земли, включаются ракетные двигатели, которые сообщают нашему аппарату дополнительную скорость в 5,8 километра в секунду. Тогда от центра земного шара наш аппарат будет двигаться с начальной скоростью 13,7 километра в секунду. Поэтому ракета пройдет вторую половину пути гораздо быстрее, чем при свободном падении с выключенными двигателями. Тем самым она будет меньшее время находиться в поле земного притяжения. И когда ракета пролетит весь бездонный колодец, скорость ее окажется равной не 5,8 километра в секунду, а 11,2 километра в секунду. При такой начальной скорости она преодолеет земное притяжение и вылетит в межпланетное пространство.
Хотя прямой путь является наиболее коротким, но не всегда он самый выгодный. Чтобы в этом убедиться, можно привести весьма интересный пример из области межпланетных сообщений.
Предположим, что мы хотим забросить ракету на Солнце. Постараемся облегчить нашу задачу: вообразим, что нам удалось создать на расстоянии 200 километров от Земли «космический вокзал», с которого ракетные корабли отправляются в межпланетный рейс, причем этот вокзал обращается вокруг Земли подобно спутнику.
Какой же маршрут надо избрать, чтоб отправить ракету с космического вокзала на Солнце? Кратчайшим будет путь по прямой, но это путь, требующий наибольшего количества топлива по сравнению с другими маршрутами. Почему? Потому что ракета, которая отправится по такому пути, должна преодолеть колоссальную центробежную силу, препятствующую ее падению на Солнце. А для этого ракетному кораблю придется сообщить громадную начальную скорость, достигающую 24 километров в секунду. Но чем больше скорость, тем больше требуется топлива.
Расчеты показывают, что при полете по кратчайшему маршруту с космического вокзала на Солнце топлива понадобится в триста девяносто семь раз больше, чем весит сама ракета. Это значит, что на каждые 10 килограммов веса нашего корабля придется брать около 4 тыс. килограммов горючего, что совершенно исключено. Применяя даже сверхлегкие и сверхпрочные сплавы, невозможно создать такую ракету, которая бы при незначительном собственном весе поднимала столь огромное количество топлива.
Следовательно, маршрут на Солнце по прямой отпадает. Поищем другой путь, при котором понадобился бы значительно меньший запас топлива. Такой путь существует. Он идет в направлении… противоположном Солнцу. Мало того, чем дальше улетит ракетный корабль от Солнца, тем меньше он израсходует горючего — и все-таки достигнет цели.