Читаем Параллельные миры полностью

В 1993 году ученые предложили использовать концепцию ЭПР-сцепленности для создания устройства, с помощью которого можно совершать квантовую телепортацию. В 1997 и 1998 годах ученые из Калифорнийского технологического института, Университета Аарус в Дании и Университета Уэльса совершили первую экспериментальную демонстрацию квантовой телепортации. В ходе эксперимента отдельный фотон был телепортирован через стол. Сэмюэл Браунштайн, принимавший участие в организации эксперимента, сравнил сцепленные пары слюбовниками, «которые знают друг друга настолько хорошо, что могут ответить за свою вторую половину, даже если их разделяют огромные расстояния».

(Для экспериментов в области квантовой телепортации необходимы три объекта — А, В и С. Пусть В и С — сцепленные близнецы. Хоть они и могут находиться на огромном расстоянии друг от друга, они все же остаются сцепленными. Пусть теперь В вступит в контакт с А, который собственно является объектом телепортации. В «сканирует» А, и информация, содержащаяся в А, переносится в В. Затем эта информация автоматически передается близнецу С. Таким образом, С превращается в точную копию А.)

В области исследований квантовой телепортации наблюдается большой прогресс. В 2003 году ученым Женевского университета в Швейцарии удалось телепортировать фотоны на расстояние в 2 км через оптоволоконный кабель. Фотоны света (при длине волны 1,3 мм) в одной лаборатории были телепортированы в другие фотоны с другой длиной волны (1,55 мм) в другую лабораторию, связанную с первой оптоволоконным кабелем. Николас Гизин, физик, принимавший участие в этом проекте, сказал: «Возможно, объекты больших размеров, такие, как молекула, и будут телепортированы до моей смерти, но по-настоящему большие объекты не поддаются телепортации при использовании обозримых технологий».

Еще один важный прорыв был совершен в 2004 году, когда ученые из Национального института стандартов и технологий (NIST) телепортировали не просто квант света, а целый атом. Их основным достижением стало то, что они успешно запутали 3 атома бериллия и смогли перенести характеристики одного атома в другой.

Область практического применения квантовой телепортации потенциально невероятно велика. Однако необходимо отметить, что существует несколько проблем практического характера, препятствующих ее применению. Во-первых, объект-оригинал уничтожается в ходе телепортации, а потому нельзя создать много точных копий телепортируемого объекта. Возможно создание только одной копии. Во-вторых, телепортировать объект быстрее света нельзя. Теория относительности действует даже для квантовой телепортации. (Чтобы телепортировать объект А в объект С, для их соединения все же необходим объект-посредник В, а его скорость меньше скорости света.) В-третьих, возможно, наиболее важным ограничением для квантовой телепортации выступает тот же фактор, который служит препятствием для создания квантовых компьютеров: рассматриваемые объекты должны быть когерентны. Любое соприкосновение с окружающей средой прервет процесс телепортации. Но вполне вероятно, что в течение XXI века удастся телепортировать первый вирус.

При телепортации человеческого существа мы можем столкнуться с другими проблемами. Браунштайн замечает: «На данный момент ключевым является исключительно количество вовлеченной информации. Даже если мы будем использовать самые лучшие каналы связи, какие только можем себе представить, для передачи всей этой информации нам понадобится время, сравнимое с возрастом нашей Вселенной».

Волновая функция Вселенной

Но, возможно, полное осознание квантовой теории произойдет, если мы применим квантовую механику не к отдельному фотону, а к целой Вселенной. Стивен Хокинг даже пошутил, что каждый раз, как он слышит о проблеме кота, он тянется за ружьем. Он предложил свое решение проблемы — существование волновой функции Вселенной. Если вся Вселенная является частью волновой функции, то отпадает надобность в существовании наблюдателя (который должен находиться за пределами Вселенной).

В квантовой теории каждая частица связана с волной. Эта волна, в свою очередь, дает информацию о вероятности обнаружения частицы в любой точке. Однако, когда Вселенная была еще очень молода, она была меньше субатомной частицы. Тогда, возможно у самой Вселенной тоже есть волновая функция. Поскольку электрон может существовать во многих состояниях одновременно и поскольку Вселенная была по размерам меньше электрона, то, возможно, Вселенная также существовала одновременно во многих состояниях, что и описывала сверхволновая функция.

Перейти на страницу:

Похожие книги

Память. Пронзительные откровения о том, как мы запоминаем и почему забываем
Память. Пронзительные откровения о том, как мы запоминаем и почему забываем

Эта книга предлагает по-новому взглянуть на одного из самых верных друзей и одновременно самого давнего из заклятых врагов человека: память. Вы узнаете не только о том, как работает память, но и о том, почему она несовершенна и почему на нее нельзя полностью полагаться.Элизабет Лофтус, профессор психологии, одна из самых влиятельных современных исследователей, внесшая огромный вклад в понимание реконструктивной природы человеческой памяти, делится своими наблюдениями над тем, как работает память, собранными за 40 лет ее теоретической, экспериментальной и практической деятельности.«Изменчивость человеческой памяти – это одновременно озадачивающее и досадное явление. Оно подразумевает, что наше прошлое, возможно, было вовсе не таким, каким мы его помним. Оно подрывает саму основу правды и уверенности в том, что нам известно. Нам удобнее думать, что где-то в нашем мозге лежат по-настоящему верные воспоминания, как бы глубоко они ни были спрятаны, и что они полностью соответствуют происходившим с нами событиям. К сожалению, правда состоит в том, что мы устроены иначе…»Элизабет Лофтус

Элизабет Лофтус

Научная литература / Психология / Образование и наука