Читаем Параллельные миры полностью

Даже в квантовой теории эта сила остается бесконечной, если мы приблизимся к квантовой точечной частице. За многие десятилетия Фейнман и другие ученые создали ряд хитрых правил, с помощью которых эти и многие другие противоречия можно было замести под ковер. Но для того, чтобы исключить все бесконечности в квантовой теории гравитации, недостаточно даже мешка ухищрений, собранного Фейнманом. Проблема в том, что точечные частицы бесконечно малы, а это означает, что их силы и энергии потенциально бесконечны.

Но при внимательном рассмотрении струнной теории мы увидим, что есть два способа, при помощи которых мы можем избавиться от этих противоречий. Первый способ исходит из топологии струн, а второй из-за своей симметрии называется суперсимметрией.

Топология струнной теории носит совершенно другой характер, чем топология точечных частиц, а отсюда различны и возникающие противоречия. (Грубо говоря, поскольку струна обладает конечной длиной, это означает, что силы не стремятся к бесконечности при приближении к струне. Рядом со струной силы возрастают пропорционально зависимости 1 /L2, где L — это длина струны, соизмеримая с длинной Планка, порядка 10"33 см. Эта длина L позволяет отсечь все противоречия.) Поскольку струна не является точечной частицей, обладая определенным размером, можно показать, что противоречия «размазаны» вдоль всей струны, и отсюда все физические величины становятся конечными.

Хотя интуитивно кажется совершенно очевидным, что все противоречия струнной теории «размазаны» и потому конечны, точное математическое выражение этого факта довольно сложно и представлено «эллиптической модулярной функцией», одной из самых странных функций математики. Ее история настолько захватывающа, что ей даже довелось играть ключевую роль в одном из голливудских фильмов. «Умница Уилл Хантинг» — это история о неотесанном пареньке из рабочей семьи с окраин Кембриджа (его играл Мэтт Дэймон), который демонстрировал потрясающие способности к математике.

В сущности, фильм «Умница Уилл Хантинг» основан на жизни Сринивазы Рамануджана, величайшего математического гения двадцатого столетия. Он вырос в бедности и изоляции от основных научных достижений возле Мадраса в Индии на рубеже ХГХ и XX веков. Поскольку юноша жил в условиях оторванности от научного мира, ему пришлось до многого доходить самому, основываясь на европейской математике ХГХ века. Его карьера была подобна взрыву сверхновой, мимолетно осветившей небеса его математической гениальностью. Его смерть была трагична: он умер от туберкулеза в 1920 году в возрасте 37 лет. Подобно Мэтту Дэймону из фильма «Умница Уилл Хантинг», Рамануджан грезил математическими уравнениями, в данном случае эллиптической модулярной функцией: написанная для двадцати четырех измерений, она обладает причудливыми, но красивыми математическими свойствами. Математики и по сей день пытаются расшифровать «утерянные записи Рамануджана», обнаруженные после его смерти. Оглядываясь на работу Рамануджана, мы видим, что ее можно обобщить и свести к восьми измерениям, которые напрямую применимы к струнной теории. Физики добавляют еще два измерения для построения физической теории. (Например, создание поляризованных солнцезащитных очков основано на том факте, что свет обладает двумя физическими поляризациями: он может вибрировать влево-вправо или вверх-вниз. Но математическая формулировка света в уравнениях Максвелла представлена четырьмя компонентами. Две из этих четырех вибраций, в сущности, лишние.) Если мы добавим еще два измерения к функциям Рамануджана, то «волшебными числами» математики становятся 10 и 26, которые являются «волшебными числами» и в струнной теории. Таким образом выходит, что в каком-то смысле Рамануджан занимался струнной теорией еще до Первой мировой войны!

Сказочные свойства этих эллиптических модулярных функций объясняют, почему теория должна существовать в десяти измерениях. Только в таком количестве измерений будто по волшебству исчезает большая часть противоречий, наводняющих все остальные теории. Но сама по себе топология струн не обладает достаточной «властью», чтобы исключить все эти противоречия. Остальные противоречия струнной теории устраняются при помощи второй ее характеристики — суперсимметрии.

Суперсимметрия

В струне заключены некоторые величайшие симметрии, известные науке. Обсуждая инфляционное расширение Вселенной и Стандартную модель в главе 4, мы видели, что симметрия предоставляет нам прекрасный способ организации субатомных частиц в приятные и изящные модели. Три типа кварков могут быть организованы согласно симметрии SU(3), которая позволяет кваркам меняться между собой местами. В теории ТВО считается, что пять типов кварков и лептонов могли бы быть организованы согласно симметрии SU(5).

Перейти на страницу:

Похожие книги

Память. Пронзительные откровения о том, как мы запоминаем и почему забываем
Память. Пронзительные откровения о том, как мы запоминаем и почему забываем

Эта книга предлагает по-новому взглянуть на одного из самых верных друзей и одновременно самого давнего из заклятых врагов человека: память. Вы узнаете не только о том, как работает память, но и о том, почему она несовершенна и почему на нее нельзя полностью полагаться.Элизабет Лофтус, профессор психологии, одна из самых влиятельных современных исследователей, внесшая огромный вклад в понимание реконструктивной природы человеческой памяти, делится своими наблюдениями над тем, как работает память, собранными за 40 лет ее теоретической, экспериментальной и практической деятельности.«Изменчивость человеческой памяти – это одновременно озадачивающее и досадное явление. Оно подразумевает, что наше прошлое, возможно, было вовсе не таким, каким мы его помним. Оно подрывает саму основу правды и уверенности в том, что нам известно. Нам удобнее думать, что где-то в нашем мозге лежат по-настоящему верные воспоминания, как бы глубоко они ни были спрятаны, и что они полностью соответствуют происходившим с нами событиям. К сожалению, правда состоит в том, что мы устроены иначе…»Элизабет Лофтус

Элизабет Лофтус

Научная литература / Психология / Образование и наука