Уже сейчас можно представить, что нас ожидает на обитаемых планетах. Подобные планеты вращаются на таком расстоянии от своей звезды, которое позволяет сохранять воду на поверхности в жидком состоянии, а не в виде льда или пара. Вода и свет — два достаточных условия для появления фотосинтезирующих организмов: свет звезды — наиболее доступный источник энергии, а фотосинтез — выгодный способ использовать эту энергию для получения органического вещества. Мы привыкли, что фотосинтетики на Земле в основном — зеленые (цианобактерии, зеленые серные бактерии, большинство растений и некоторые одноклеточные, например эвгленовые): они отражают зеленую часть видимого спектра. Однако синие фотоны несут больше всего энергии, хотя и встречаются реже других (на них и охотятся наземные фотосинтетики), а красные фотоны хотя и менее энергоемки, но обильны. Поэтому многие морские водоросли поглощают красные фотоны — частицы других цветов, в том числе зеленые, до них просто не доходят. А наземным растениям они не выгодны энергетически, вот и отражаются обратно. Такая система работает, если звезда похожа на Солнце — относится к желтому классу G. Более горячие звезды (класс F) льют на планеты сильный синий свет, и тамошние фотосинтетики, отражая избыток света, будут казаться голубыми. Но большинство планет обитаемой зоны вращаются либо вокруг красных карликов (класс М), либо вокруг двойных и тройных звездных систем (например, G + М). На планетах в системе красного карлика, по мысли Джека О'Малли-Джеймса, астробиолога из Университета города Сент-Эндрюс, фотосинтетикам будет энергетически выгодно быть серыми или черными — поглощать весь свет, который до них дойдет, включая инфракрасный. Впрочем, фиолетовый оттенок им тоже будет к лицу. А вот в планетных системах двойных звезд можно ожидать живую природу буквально всех цветов радуги. Вряд ли одни и те же виды приобретут различные пигменты. Более вероятно, что естественный отбор заставит одни фотосинтетики приспособиться к свету карлика, а другие благоденствовать под лучами условного солнца. Поэтому вместо белой зимы и зеленого лета на таких планетах можно будет увидеть красную зиму и зеленое лето, а может быть, еще и черную осень: одни организмы будут разворачивать свои фотосинтезирующие органы, в то время как другие, наоборот, — увядать. Это зависит от взаимного расположения звезд в системе и параметров орбиты планеты. Вот где действительно положение звезд может судьбу предсказать. Хотя бы эволюционную…
Занятно рассуждать обо всем этом, восседая на кочке посреди тундры. Обитатели островка суши в бескрайнем океане болот поневоле наводят на космические фантазии своими необычными формами и расцветками, особенно если приложить щеку к теплой прошлогодней моховой подушке и представить их великанами. Вот тянется вверх розовый частокол извивающихся колышков тамнолии. По соседству белеют ветвистые рожки кладонии оленьей и похожая на многоэтажные грибы кладония шаронесущая. Последняя еще и рыжими шариками украшена. А чуть подальше развернула зеленые пластины, так напоминающие листья какого-нибудь дерева, пельтигера пупырчатая.
Все это лишайники — основа «растительного» разнообразия (2000 видов — больше, чем цветковых) Арктической тундры; главное же в том, что они вместе со мхами регулируют водный баланс и отчасти температуру в этих местах. Их цвет и форма обусловлены той же проблемой, с которой могут столкнуться обитатели многих экзопланет, — недостаток света. Вот и приходится лишайникам буквально выкручиваться, приобретая причудливые формы, лишь бы их фотосинтезирующеи части было хорошо. А значит, будет хорошо и другим жителям тундры, использующим их в пищу даже зимой (кладония оленья — это и есть известный «олений мох», или ягель) или для строительства гнезд.
На Земле лишайники в силурийском — начале девонского периода проявили себя подлинными первопроходцами весьма негостеприимной суши.
Растение-сфинкс
Так образно назвал в 1885 году лишайник известный физиолог растений Климент Аркадьевич Тимирязев на публичной лекции в московском Политехническом музее: