Читаем Паутина жизни. Новое научное понимание живых систем полностью

Чтобы определить тип множества Жулиа для определенной константы с, итерацию необходимо каждый раз выполнить для нескольких тысяч точек, пока не выяснится, продолжают ли значения увеличиваться или остаются конечными. Если конечные точки помечать черным Цветом, а те, что продолжают увеличиваться, — белым, множество Жулиа в конце концов проявится в виде черной фигуры. Вся процедура очень проста, но занимает много времени. Очевидно, необходимо использование высокоскоростного компьютера, чтобы получить точную форму за приемлемое время.

Для каждой константы с можно получить различные множества Жулиа, поэтому число этих множеств неограниченно. Некоторые из них представляют собой отдельные, связанные между собой части; другие распадаются на несколько изолированных частей; а третьи выглядят так, будто они рассыпались на мелкие осколки (рис. 6-18). Все множества отличаются неровными, изрезанными очертаниями, что характерно для фракталов, и большинство из них невозможно описать языком классической геометрии. «Получается невообразимое разнообразие множеств Жулиа, — восхищается французский математик Адриен Дуади. — Одни напоминают плотные облака, другие — тощий куст ежевики, а некоторые похожи на искры, парящие в воздухе после фейерверка. Встречается форма кролика, многие напоминают хвосты морских коньков»34.













Рис. 6-18. Разнообразие множеств Жулиа. Из PeitigenandRichter (1986)

Богатство и разнообразие форм, многие из которых напоминают живые создания, просто поражает. Однако настоящие чудеса начинаются, когда мы увеличиваем очертания любой части множества Жулиа. Как и в случае с облаком или береговой линией, такое же богатство отображается на всех уровнях диапазона исследования. С увеличением степени разрешения (т. е. когда все больше и больше знаков после точки учитывается при вычислении числа z) появляется все больше и больше деталей контура фрактала и обнаруживается фантастическая последовательность паттернов внутри паттернов — похожих, но никогда не идентичных друг другу.

Когда Мандельбро в конце 70-х годов анализировал различные математические проявления множеств Жулиа, пытаясь классифицировать их бесконечное многообразие, он открыл очень простой способ создания единого изображения на комплексной плоскости, которое может служить своеобразным каталогом всех возможных множеств Жулиа. Это изображение, с тех пор ставшее основным визуальным символом новой математики сложных систем, называется множеством Мандельбро (рис. 6-19). Это просто совокупность на комплексной плоскости всех точек с константой с, для которых соответствующие множества Жулиа представляют единые связные области. Чтобы построить множество Мандельбро, таким образом, следует построить отдельное множество Жулиа для каждой точки с на комплексной плоскости и определить, является ли это конкретное множество связным или разделенным. Например, среди множеств Жулиа, изображенных на рис. 6-18, три набора в верхнем ряду и один в центре нижнего ряда — связны (т. е. каждое из них представляет собой единую фигуру), в то время как крайние наборы в нижнем ряду разделены (т. е. состоят из нескольких отдельных областей).



Рис. 6-19. Множество Мандельбро. Из PeitgenandRichter (1986)

Генерирование множеств Жулиа для нескольких тысяч значений с, каждое из которых складывается из тысяч точек, требующих многократных итераций, представляется невыполнимой задачей. Однако к счастью, существует мощная теорема, сформулированная самим Гастоном Жулиа, которая значительно сокращает количество необходимых шагов35. Чтобы выяснить, является ли конкретное множество Жулиа связным или разделенным, следует просто произвести итерацию для начальной точки z = 0. Если после нескольких итераций значение в этой точке остается конечным, т. е. имеет некоторый конечный предел, то множество Жулиа будет связным, каким бы фантастичным оно ни выглядело; если же это значение стремится к бесконечности, множество всегда будет разъединенным. Поэтому, чтобы построить множество Мандельбро, необходимо выполнить итерацию лишь в одной точке, z = 0, для каждого значения с. Иными словами, для построения множества Мандельбро требуется такое же количество шагов, как и для множества Жулиа.

В то время как существует бесконечное количество множеств Жулиа, множество Мандельбро уникально. Эта странная фигура представляет собой самый сложный математический объект из всех когда-либо изобретенных. И хотя правила его построения очень просты, многообразие и сложность, которые он проявляет при ближайшем рассмотрении, просто невероятны. Когда множество Мандельбро строится на фиксированной координатной сетке, на экране компьютера появляются два диска: меньший имеет относительно круглую форму, больший отдаленно напоминает очертания сердца. На каждом из двух дисков выделяется несколько небольших дискообразных наростов, расположенных вдоль границ диска, а дальнейшее повышение разрешения выявляет изобилие все более мелких наростов, напоминающих колючие шипы.

Перейти на страницу:

Похожие книги

Психология согласия. Революционная методика пре-убеждения
Психология согласия. Революционная методика пре-убеждения

Лучший способ добиться согласия — это воспользоваться пре-убеждением. Революционной методикой, которая позволяет получать положительные ответы еще до начала переговоров. Хотите уговорит руководителя повысить вам зарплату? Соблазнить потенциального клиента на дорогую покупку? Убедить супруга провести выходные так, как хочется вам и не хочется ему? Пре-убеждение от социального психолога №1 в мире, автора бестселлера "Психология влияния" Роберта Чалдини срабатывает во всех случаях. Она помогает избежать клиентских возражений, утомительных споров и обидных отказов. 7 простых принципов пре-убеждения позволяют выстроить разговор таким образом, что его исход почти наверняка приведет к желаемому согласию.

Роберт Бено Чалдини , Роберт Чалдини

Деловая литература / Психология / О бизнесе популярно / Образование и наука / Финансы и бизнес
Психология масс и фашизм
Психология масс и фашизм

Предлагаемая вниманию читателя работа В. Paйxa представляет собой классическое исследование взаимосвязи психологии масс и фашизма. Она была написана в период экономического кризиса в Германии (1930–1933 гг.), впоследствии была запрещена нацистами. К несомненным достоинствам книги следует отнести её уникальный вклад в понимание одного из важнейших явлений нашего времени — фашизма. В этой книге В. Райх использует свои клинические знания характерологической структуры личности для исследования социальных и политических явлений. Райх отвергает концепцию, согласно которой фашизм представляет собой идеологию или результат деятельности отдельного человека; народа; какой-либо этнической или политической группы. Не признаёт он и выдвигаемое марксистскими идеологами понимание фашизма, которое ограничено социально-политическим подходом. Фашизм, с точки зрения Райха, служит выражением иррациональности характерологической структуры обычного человека, первичные биологические потребности которого подавлялись на протяжении многих тысячелетий. В книге содержится подробный анализ социальной функции такого подавления и решающего значения для него авторитарной семьи и церкви.Значение этой работы трудно переоценить в наше время.Характерологическая структура личности, служившая основой возникновения фашистских движении, не прекратила своею существования и по-прежнему определяет динамику современных социальных конфликтов. Для обеспечения эффективности борьбы с хаосом страданий необходимо обратить внимание на характерологическую структуру личности, которая служит причиной его возникновения. Мы должны понять взаимосвязь между психологией масс и фашизмом и другими формами тоталитаризма.Данная книга является участником проекта «Испр@влено». Если Вы желаете сообщить об ошибках, опечатках или иных недостатках данной книги, то Вы можете сделать это здесь

Вильгельм Райх

Культурология / Психология и психотерапия / Психология / Образование и наука