Читаем Паутина жизни. Новое научное понимание живых систем полностью

В течение двух десятилетий Форстер поддерживал междисциплинарную группу, созданную при Университете Иллинойса для изучения самоорганизующихся систем. Она называлась Лабораторией биокомпьютеров и представляла собой тесный круг друзей и коллег, которые работали вдалеке от редукционистского направления и чьи идеи, опережающие время, широко не публиковались. Тем не менее эти идеи стали семенами, из которых в конце 70-х и в 80-е годы выросло множество удачных моделей самоорганизующихся систем.

Сам Хайнц фон Форстер внес свой вклад в теоретическое понимание самоорганизации гораздо раньше. Его исследования касались понятия порядка. Он задался вопросом: существует ли мера порядка, которую можно было бы использовать для оценки увеличения порядка, обусловленного «организацией»? Для решения этой проблемы Форстер использовал концепцию «избыточности», оформленную математически в рамках теории информации Клодом Шэнноном; избыточность и есть мера относительного порядка системы по отношению к изначальному максимальному беспорядку20.

Позже этот подход был вытеснен новой математикой сложных систем, однако в конце 50-х он позволил Форстеру разработать первую качественную модель самоорганизации в живых системах. Он ввел выражение «порядок из шума», подчеркнув тем самым, что самоорганизующаяся система не просто «импортирует» порядок из своего окружения, но отбирает богатую энергией материю, интегрирует ее в свою структуру и таким способом повышает уровень собственного внутреннего порядка.

В течение 70-х и 80-х годов ключевые идеи этой ранней модели были усовершенствованы и развиты исследователями из многих стран; феномен самоорганизации в разнообразных системах, от микроскопических до очень крупных, изучали Илья Пригожий в Бельгии, Герман Хакен и Манфред Эйген в Германии, Джеймс Лавлок в Англии, Линн Маргулис в США, Умберто Матурана и Франциско Варела в Чили21. Все полученные ими модели самоорганизующихся систем обладают некоторыми очень важными общими характеристиками, которым предстоит стать фундаментом единой теории живых систем; очерк такой теории и предлагается к обсуждению в этой книге.

Первое важное отличие между изначальной концепцией самоорганизации в кибернетике и более сложными поздними моделями состоит в том, что последние предусматривают создание новых структур и новых режимов поведения в ходе процесса самоорганизации. Для Эшби все возможные структурные изменения происходят в рамках «резерва разнообразия» структур, а шансы на выживание системы зависят от богатства или «необходимого разнообразия» этого резерва. Здесь не существует ни творчества, ни развития, ни эволюции. Поздние модели, напротив, включают создание новых структур и режимов поведения в процессе развития, обучения и эволюции.

Вторая общая для этих моделей самоорганизации особенность заключается в том, что все они представляют открытые системы, функционирующие вдали от состояния равновесия. Для того чтобы осуществлялась самоорганизация, необходим непрерывный поток материи и энергии сквозь систему. Удивительное внезапное зарождение новых структур и новых форм поведения — самое важное отличительное свойство самоорганизации — возможно только при том условии, что система далека от равновесия.

Третья особенность самоорганизации, тоже общая для всех моделей, — нелинейная взаимосвязанность компонентов системы. Физически этот нелинейный паттерн выражается в появлении петель обратной связи; математически он описывается нелинейными уравнениями.

Суммируя эти три характеристики самоорганизующихся систем, можно сказать, что самоорганизация это спонтанное зарождение новых структур и новых форм поведения в далеких от состояния равновесия открытых системах, которое характеризуется появлением внутренних петель обратной связи и математически описывается нелинейными уравнениями.

Диссипативные структуры

Первым и, вероятно, наиболее впечатляющим подробным описанием самоорганизующихся систем стала теория диссипативных структур химика и физика Ильи Пригожина, русского по рождению, Нобелевского лауреата и профессора химии в Свободном Университете в Брюсселе. Пригожий разработал свою теорию на основе изучения физических и химических систем, но, согласно его собственным воспоминаниям, к этому его побудили размышления над природой жизни:

Меня чрезвычайно интересовала проблема жизни... Я всегда думал, что само существование жизни говорит нам нечто очень важное о природе22.

Наибольший интерес у Пригожина вызывал тот факт, что живые организмы способны поддерживать свою жизнь в условиях неравновесия. Он увлекся системами, далекими от теплового равновесия, и начал интенсивные исследования, задавшись целью определить точные условия, при которых неравновесные состояния могут быть устойчивыми.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука