Эти каталитические циклы лежат в основе самоорганизующихся химических систем, подобных химическим часам, исследованным Пригожиным; кроме того, они играют существенную роль в метаболических функциях живых организмов. Они замечательным образом устойчивы и выдерживают широкий диапазон условий38. Эйген установил, что в условиях достаточного времени и непрерывного потока энергии каталитические циклы обнаруживают тенденцию к сцеплению, формируя замкнутые петли, в которых ферменты, созданные в одном цикле, служат катализаторами в последующем цикле. Он ввел термин «гиперциклы» для тех петель, в которых каждый узел представляет собой каталитический цикл.
Оказывается, что гиперциклы проявляют не только замечательную устойчивость, но также и способность к самовоспроизведению и коррекции ошибок при воспроизведении. А это означает, что они могут хранить и передавать сложную информацию. Теория Эйгена показывает, что такое самовоспроизведение — конечно, хорошо известное в мире живых организмов — могло происходить в химических системах задолго до появления жизни, до образования генетической структуры. Химические гиперциклы, таким образом, являются самоорганизующимися системами, которые, строго говоря, нельзя назвать «живыми», поскольку у них отсутствуют некоторые ключевые характеристики жизни. Тем не менее их можно рассматривать в качестве прототипов живых систем. Урок, который можно извлечь из этого, по-видимому, заключается в том, что
Одно из наиболее поразительных «жизнеподобных» свойств гиперциклов состоит в том, что они могут развиваться, проходя через периоды неустойчивости и последовательно создавая все более высокие уровни организации, которые характеризуются нарастающим разнообразием и богатством компонентов и структур38.
Эйген отмечает, что новые гиперциклы, сформированные подобным образом, вполне могут составить конкуренцию естественному отбору, и, описывая весь процесс, он явным образом ссылается на теорию Пригожина: «Возникновение мутаций с преимуществами отбора соответствует определенной неустойчивости, которую можно объяснить с помощью теории... Пригожина и Глансдорфа»39.
Теория гиперциклов Маифреда Эйгена содержит те же основные концепции самоорганизации, что и теория диссипативных структур Ильи Пригожина и теория лазеров Германа Хакена, а именно: состояние системы, далекое от равновесия; развитие усилительных процессов через петли положительной обратной связи; возникновение неустойчивых состояний, приводящих к образованию новых форм организации. Помимо этого, Эйген совершил революционный переворот, применив дарвиновский подход к описанию эволюционных феноменов на добиологическом, молекулярном уровне.
Гиперциклы, изученные Эйгеном, самоорганизуются, самовоспроизводятся и эволюционируют. И все же возникают сомнения, можно ли назвать эти циклы химических реакций «живыми». Какими свойствами, в таком случае, должна обладать система, чтобы ее можно было считать воистину живой? Можем ли мы провести четкое различие между живыми и неживыми системами? В чем конкретно заключается суть связи между самоорганизацией и жизнью?
Именно эти вопросы в 60-е годы задавал себе чилийский нейробиолог Умберто Матурана. После шести лет учебы и исследований в области биологии, проведенных в Англии и Соединенных Штатах, где он сотрудничал с группой Уоррена Мак-Каллока в Массачусетском технологическом институте и находился под сильным влиянием кибернетиков, в 1960 г. Матурана вернулся в Университет Сантьяго. Там он специализировался в нейробиологии и, в частности, занимался проблемами цветовосприятия.
В результате этих исследований у Матураны выкристаллизовались два основных вопроса. Он вспоминал позже: «Я попал в ситуацию, когда моя академическая жизнь разделилась — я искал ответы на два вопроса, которые, казалось, ведут в противоположные стороны: Что представляет собой организация живого? Что такое феномен восприятия?»40.
Почти десять лет Матурана бился над этими вопросами, и его гениальность выразилась в том, что он сумел дать единый ответ на оба. Тем самым он открыл возможность объединить две традиции системного мышления, которые сосредоточились на противоположных сторонах картезианского разделения. Организменные биологи исследовали природу биологической формы, а кибернетики пытались понять природу разума. В конце шестидесятых Матурана осознал, что разгадка обеих этих головоломок лежит в понимании «организации живого».