В то время как Пригожин и Хакен изучали феномен самоорганизации, исследуя физические и химические системы, которые проходят через точки неустойчивости и образуют новые формы порядка, биохимик Манфред Эйген применил ту же концепцию, пытаясь пролить свет на тайну происхождения жизни. Согласно традиционной версии теории Дарвина, живые организмы выделились из «молекулярного хаоса» случайно, в процессе беспорядочных мутаций и естественного отбора. Тем не менее многие ученые отмечали, что вероятность такого возникновения даже простейших клеток за обозримый период развития Земли фактически равна нулю.
Манфред Эйген, нобелевский лауреат и директор Института физической химии имени Макса Планка в Гёттингене, в начале 70-х предположил, что возникновение жизни на Земле стало возможным благодаря процессу нарастающей организации в далекой от равновесия химической системе, с образованием
Особые системы реакций, которые изучал Эйген, известны как
Когда Эйген и его коллеги в 60-е годы изучали каталитические реакции с участием ферментов, они заметили, что в далеких от равновесия биохимических системах, т. е. системах, пронизанных энергетическими потоками, различные каталитические реакции объединяются, формируя сложные сети, в которых могут содержаться и замкнутые циклы. На рис. 5–3 приведен пример такой каталитической сети, когда 15 ферментов ускоряют формирование друг друга таким образом, что образуется замкнутый, или каталитический, цикл.
Эти каталитические циклы лежат в основе самоорганизующихся химических систем, подобных химическим часам, исследованным Пригожиным; кроме того, они играют существенную роль в метаболических функциях живых организмов. Они замечательным образом устойчивы и выдерживают широкий диапазон условий38. Эйген установил, что в условиях достаточного времени и непрерывного потока энергии каталитические циклы обнаруживают тенденцию к сцеплению, формируя замкнутые петли, в которых ферменты, созданные в одном цикле, служат катализаторами в последующем цикле. Он ввел термин «гиперциклы» для тех петель, в которых каждый узел представляет собой каталитический цикл.
Оказывается, что гиперциклы проявляют не только замечательную устойчивость, но также и способность к самовоспроизведению и коррекции ошибок при воспроизведении. А это означает, что они могут хранить и передавать сложную информацию. Теория Эйгена показывает, что такое самовоспроизведение — конечно, хорошо известное в мире живых организмов — могло происходить в химических системах задолго до появления жизни, до образования генетической структуры. Химические гиперциклы, таким образом, являются самоорганизующимися системами, которые, строго говоря, нельзя назвать «живыми», поскольку у них отсутствуют некоторые ключевые характеристики жизни. Тем не менее их можно рассматривать в качестве прототипов живых систем. Урок, который можно извлечь из этого, по-видимому, заключается в том, что
Одно из наиболее поразительных «жизнеподобных» свойств гиперциклов состоит в том, что они могут развиваться, проходя через периоды неустойчивости и последовательно создавая все более высокие уровни организации, которые характеризуются нарастающим разнообразием и богатством компонентов и структур38.
Рис. 5–3.
Каталитическая сеть ферментов, включающая замкнутый цикл (Е1 — Е15). Из Eigen (1971)
Эйген отмечает, что новые гиперциклы, сформированные подобным образом, вполне могут составить конкуренцию естественному отбору, и, описывая весь процесс, он явным образом ссылается на теорию Пригожина: «Возникновение мутаций с преимуществами отбора соответствует определенной неустойчивости, которую можно объяснить с помощью теории… Пригожина и Глансдорфа»39.